New roles for key residues in helices H1 and H2 of the Escherichia coli H-NS N-terminal domain: H-NS dimer stabilization and Hha binding.

J Mol Biol

Laboratory of Biomolecular NMR, Institut de Recerca Biomèdica-Parc Científic de Barcelona, Josep Samitier, 1-5 08028 Barcelona, Spain.

Published: June 2006

Bacterial nucleoid-associated proteins H-NS and Hha modulate gene expression in response to environmental factors. The N-terminal domain of H-NS is involved in homomeric and heteromeric protein-protein interactions. Homomeric interaction leads to the formation of dimers and higher oligomers. Heteromeric interactions with Hha-like proteins modify the modulatory properties of H-NS. In this study, we have used NMR and mutagenesis of the N-terminal domain of H-NS to identify the Hha-binding region around helices H1 and H2 of H-NS. Two conserved arginine residues, R12 and R15, located in the same side and in adjacent turns of helix H2 are shown to be involved in two different protein-protein interactions: R12 is essential for Hha binding and does not affect H-NS dimer formation, and R15 does not affect Hha binding but is essential for the proper folding of H-NS dimers. Our results demonstrate a close structural connection between Hha-H-NS interactions and H-NS dimerization that may be involved in a possible mechanism for the modulation of the H-NS regulatory activity by Hha.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2006.03.059DOI Listing

Publication Analysis

Top Keywords

n-terminal domain
12
domain h-ns
12
hha binding
12
h-ns
11
h-ns dimer
8
protein-protein interactions
8
hha
5
roles key
4
key residues
4
residues helices
4

Similar Publications

The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units.

View Article and Find Full Text PDF

Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.

View Article and Find Full Text PDF

Background: In neurodegenerative disease such as Alzheimer's disease and stroke, the brain transitions to pro-inflammatory profile, where microglia and T-cells in the brain have increase inflammatory profiles, along with increased Kv1.3 potassium channel abundance. Pharmacological blockade of Kv1.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We previously identified a 44-base pair deletion in (ATP-binding cassette sub-family A member 7) (ABCA7) that is significantly associated with Alzheimer's disease (AD) in African Americans (AA), producing a frameshift mutation resulting in a truncated protein (p.Arg578Alafs). ABCA7 is a lipid transporter across cellular membranes.

View Article and Find Full Text PDF

Introduction: Dl-3-n-butylphthalide (NBP), a small molecular compound extracted from celery seeds, has been shown to exhibit diverse pharmacological activities, including anti-inflammatory, antioxidative, and anti-apoptotic effects. Recent studies have highlighted its efficacy in treating various cardiovascular conditions, such as myocardial infarction, hypertrophy, heart failure, and cardiotoxicity. This study aimed to investigate whether NBP could alleviate cardiac dysfunction and injury following hemorrhage-induced cardiac arrest (HCA) in a porcine model and elucidate its potential mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!