RasGRF is a family of guanine nucleotide exchange factors with dual specificity for both Ras and Rac GTPases. In this study, using mouse brain extracts, we show that both RasGRF1 and RasGRF2 interact with microtubules in an in vitro microtubule assembly system and this binding is very tight. To characterize this association, recombinant purified proteins containing different regions of RasGRF1 were tested for their ability to bind microtubules preassembled from pure tubulin. Only the DHPH2 tandem directly associates with microtubules, whereas the isolated DH or PH2 domains do not, indicating that the entire DHPH2 region is required for this association. The interaction occurs with high affinity (Kd approximately = 2 microM) and with a stoichiometry, at saturating conditions, of one DHPH2 molecule for two tubulin dimers. Competition experiments support the hypothesis that the DHPH2 module is largely responsible for RasGRF1-microtubule interaction. In vivo colocalization of RasGRF1 and microtubules was also observed by fluorescence confocal microscopy in nonneuronal cells after stimulation with an oxidative stress agent and in highly differentiated neuron-like cells. Identification of microtubules as new binding partners of RasGRF1 may help to elucidate the signaling network in which RasGRF1 is involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2006.05226.x | DOI Listing |
HGG Adv
January 2025
GeneDx LLC, Gaithersburg, Maryland, 20877.
The ARHGEF40 gene, also known as SOLO, encodes a RhoA-targeting guanine nucleotide exchange factor (GEF) and is currently considered a candidate gene with a potential relationship to disease. Our laboratory has confirmed variants at position p.Arg225 of the ARHGEF40 protein in multiple unrelated individuals with a phenotype including dysmorphic features, congenital anomalies and neurodevelopmental abnormalities.
View Article and Find Full Text PDFCardiovasc Res
January 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Aims: Dedicator of Cytokinesis 2 (DOCK2), a member of the DOCK family of Guanine nucleotide exchange factors that specifically act on the Rho GTPases including Rac and Cdc42, plays pivotal roles in the regulation of leukocyte homeostasis. However, its functions in platelets remain unknown.
Methods And Results: Using mice with genetic deficiency of DOCK2 (Dock2-/-), we showed that Dock2-/-mice exhibited a macrothrombocytopenic phenotype characterized as decreased platelet count and enlarged platelet size by transmission electron microscopy.
Proc Natl Acad Sci U S A
January 2025
Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706.
Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG.
View Article and Find Full Text PDFJ Med Chem
January 2025
Boehringer Ingelheim RCV GmbH & Co. KG, A-1121 Vienna, Austria.
The Son of Sevenless (SOS) protein family includes two highly homologous proteins, SOS1 and SOS2, that act as guanine nucleotide exchange factors (GEFs) for RAS proteins. They catalyze the GDP-to-GTP exchange, resulting in an increase of the active GTP-bound form of RAS. Despite highly similar structures and expression patterns, SOS1 is generally accepted as the dominant RAS GEF for downstream signaling in pathological states.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!