Domain memory of mixed polymer brushes.

Langmuir

Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany.

Published: May 2006

The nano-phase-separation in mixed polymer brushes consisting of polystyrene and poly(methyl methacrylate) (PS-PMMA) chains attached to a silicon surface is studied. The topographies of the mixed brushes are examined after they have been exposed to solvents which induce or erase nano-phase-separation. It is discussed whether the brush locally forms the same pattern every time the transition from the smooth and featureless to the nanopatterned state occurs ("domain memory") or if the local assembly of the domains emerges in a different arrangement after each cycle of topography switching. A memory measure parameter is introduced, which characterizes quantitatively the domain memory effect in the nanopattern. It is shown that at constant grafting density but with increasing molecular weight of the brush chains the memory measure parameter decreases. In contrast to this, brushes with constant molecular weight, but differing in grafting density, all have a similar domain memory. We discuss a possible origin of the domain memory effect in the mixed brush systems studied and point out its impact on the motion of nanoparticles adsorbed on top of such systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la060134bDOI Listing

Publication Analysis

Top Keywords

domain memory
16
memory mixed
8
mixed polymer
8
polymer brushes
8
memory measure
8
measure parameter
8
grafting density
8
molecular weight
8
memory
5
domain
4

Similar Publications

Introduction: Successful cognitive aging is related to both maintaining brain structure and avoiding Alzheimer's disease (AD) pathology, but how these factors interplay is unclear.

Methods: A total of 109 cognitively normal older adults (70+ years old) underwent amyloid beta (Aβ) and tau positron emission tomography (PET) imaging, structural magnetic resonance imaging (MRI), and cognitive testing. Cognitive aging was quantified using the cognitive age gap (CAG), subtracting chronological age from predicted cognitive age.

View Article and Find Full Text PDF

Background: Physical activity (PA) interventions have been shown to yield positive effects on cognitive functions. However, it is unclear which type of PA intervention is the most effective in children and adolescents with Neurodevelopmental Disorders (NDDs). This study aimed to compare the effectiveness of different types of PA interventions on cognitive functions in children and adolescents with NDDs, with additional analyses examining intervention effects across specific NDD types including attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD).

View Article and Find Full Text PDF

Background And Objectives: This systematic review aims to synthesize the current literature on the association between chemotherapy (CTX) and chemotherapy-related cognitive impairment (CRCI) with functional and structural brain alterations in patients with noncentral nervous system cancers.

Methods: A comprehensive search of the PubMed/MEDLINE, Web of Science, and Embase databases was conducted, and results were reported following preferred reporting items for systematic review and meta-analyses guidelines. Data on study design, comparison cohort characteristics, patient demographics, cancer type, CTX agents, neuroimaging methods, structural and functional connectivity (FC) changes, and cognitive/psychological assessments in adult patients were extracted and reported.

View Article and Find Full Text PDF

Objectives: Caring for an individual with cognitive impairment carries a physical, mental, and emotional toll. This manuscript examines the relationship between caregiver psychosocial measures and longitudinal cognitive outcomes of stroke survivors, as well as analyzing the psychosocial factors as moderators of stroke severity and cognition.

Methods: This analysis was conducted on caregiver and stroke survivor dyads (n = 157) that participated in the Caring for Adults Recovering from the Effects of Stroke (CARES) project, an ancillary study of the REasons for Geographic and Racial Differences in Stroke (REGARDS) national cohort study.

View Article and Find Full Text PDF

Two-Dimensional Nonvolatile Valley Spin Valve.

ACS Nano

January 2025

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States.

A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission, controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV)─a device that utilizes the valley degree of freedom and spin-valley locking to achieve a similar valve effect without relying on magnetism. In this study, we propose a nonvolatile VSV (-VSV) based on a two-dimensional (2D) ferroelectric semiconductor where resistance of -VSV is controlled by a ferroelectric domain wall between two uniformly polarized domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!