Proteins of the Ard family are specific inhibitors of type I restriction-modification enzymes. The ArdA of R64 is highly homologous to ColIb-P9 ArdA, differing only by four amino acid residues of the overall 166. However, unlike ColIb-P9 ArdA, which inhibits both the endonuclease and the methylase activities of EcoKI, the R64 ArdA protein inhibits only the endonuclease activity of this enzyme. The mutant forms of R64 ArdA--A29T, S43A, and Y75W, capable of partially reversing the protein to ColIb-P9 ArdA form--were produced by directed mutagenesis. It was demonstrated that only Y75W mutation of these three variants essentially influenced the functional activity of ArdA: the antimodification activity was restored to approximately 90-99%. It is assumed that R64 ArdA inhibits formation of the complex between unmodified DNA and the R subunit of the type I restriction-modification enzyme EcoKI (R2M2S), which translocates and cleaves DNA. ColIb-P9 ArdA protein is capable of forming the DNA complex not only with the R subunit, but also with the S subunit, which contacts sK site (containing modified adenine residues) in DNA. ArdA bound to the specific sK site inhibits concurrently the endonuclease and methylase activities of EcoKI (R2M2S), while ArdA bound to the nonspecific site in the R subunit blocks only its endonuclease activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

colib-p9 arda
16
arda protein
12
arda
11
type restriction-modification
8
arda inhibits
8
inhibits endonuclease
8
endonuclease methylase
8
methylase activities
8
activities ecoki
8
r64 arda
8

Similar Publications

The effects of histone-like protein H-NS on transcription of promoters of the Quorum Sensing regulated operons from marine luminescent mesophilic bacterium Aliivibrio fischeri and psychrophilic Aliivibrio logei, as well as from pathogenic Pseudomonas aeruginosa, are studied. In the present work, the plasmids carrying DNA fragments with the promoters Pr1f (upstream of the luxICDABEG operon from A. fischeri), Pr1l (upstream of the luxCDABEG operon from A.

View Article and Find Full Text PDF

The antirestriction proteins ArdA ColIb-P9, Arn T4 and Ocr T7 specifically inhibit type I and type IV restriction enzymes and belong to the family of DNA-mimic proteins because their three-dimensional structure is similar to the double-helical B-form DNA. It is proposed that the DNA-mimic proteins are able to bind nucleoid protein H-NS and alleviate H-NS-silencing of the transcription of bacterial genes. Escherichia coli lux biosensors were constructed by inserting H-NS-dependent promoters into a vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE operon.

View Article and Find Full Text PDF

The ArdA and Ocr antirestriction proteins, whose genes are in transmissible plasmids (ardA) and bacteriophage genomes (0.3 (ocr)), specifically inhibit type I restriction-modification enzymes. The Ocr protein (T7 bacteriophage) was shown to inhibit both restriction (endonuclease) and modification (methylase) activities of the EcoKI enzyme in a broad range of intracellular concentrations (starting from 10-20 molecules per cell).

View Article and Find Full Text PDF

A streptomycin and tetracycline resistance plasmid R64 isolated from Salmonella enterica serovar Typhimurium belongs to the incompatibility group I1 (IncI1). The DNA sequence of the R64 conjugative transfer region was described previously (Komano et al., 2000).

View Article and Find Full Text PDF

Anti-restriction proteins ArdA and Ocr are specific inhibitors of type I restriction-modification enzymes. The IncI1 transmissible plasmid ColIb-P9 ardA and bacteriophage T7 0.3(ocr) genes were cloned in pUC18 vector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!