A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Correlation of swelling pressure and intrafibrillar water in young and aged human intervertebral discs. | LitMetric

Fluid balance in the intervertebral disc under applied load is determined primarily by its swelling pressure, that is, the external pressure at which it neither loses nor gains water. This depends on the composition of the tissue, in particular on its proteoglycan concentration. Proteoglycans develop a high osmotic pressure due to their fixed negatively charged groups. Because of their size, proteoglycans are excluded from the collagen's intrafibrillar volume; hence their osmotic activity is determined only by the extrafibrillar water. Here, we show that in order to evaluate correctly the swelling pressure in the annuli fibrosi of human intervertebral disc, it is essential to evaluate its proportion of intrafibrillar water. We used low-angle X-ray scattering and osmotic stress techniques to determine the lateral packing of the collagen molecules in the fibrils of the annuli fibrosi (ages: 25-77). It was found that the lateral packing and, hence, the intrafibrillar water content depends on age, external osmotic pressure, and location in the tissue. Subtracting intrafibrillar water from total hydration yields the amount of extrafibrillar water, from which the true fixed charge density of the tissue could be estimated. From a force balance, it would appear that collagen tension plays only a minor role in the equilibrium of the human intervertebral disc under load, in contrast to articular cartilage, where collagen tension is important for load bearing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.20144DOI Listing

Publication Analysis

Top Keywords

intrafibrillar water
16
swelling pressure
12
human intervertebral
12
intervertebral disc
12
osmotic pressure
8
extrafibrillar water
8
annuli fibrosi
8
lateral packing
8
collagen tension
8
water
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!