We previously showed that NCX 4040 inhibits in vitro and in vivo tumor growth and induces apoptosis in human colon cancer cell lines. On the basis of these results, NCX 4040 antitumor activity in combination with 5-fluorouracil (5-FU) or oxaliplatin was evaluated in vitro and in vivo in human colon cancer models. The cytotoxicity of different NCX 4040 and 5-FU or oxaliplatin combination schemes was evaluated on a panel of colon cancer lines (LoVo, LoVo Dx, WiDr, and LRWZ) by the sulforhodamine B assay, and apoptosis was assessed by flow cytometry. NCX 4040 and 5-FU combination was always additive in vitro regardless of the scheme used. Sequential NCX 4040-->oxaliplatin treatment produced a strong synergism in three cell lines, with a ratio index ranging from 3.7 to 4. The synergistic effect was accompanied by apoptosis induction (up to 40%). In the in vivo experiments, xenografted mice were treated with the sequential combination of NCX 4040 and oxaliplatin, and apoptosis was evaluated immunohistochemically in excised tumors. Furthermore, in WiDr xenografts, this sequence caused a significantly higher reduction ( approximately 60%) in tumor growth compared with single-drug treatments and produced extensive apoptotic cell death (15.3%), significantly higher (P < 0.01) than that observed in untreated tumors (2.7%) or in tumors treated with NCX 4040 (5.1%) or oxaliplatin (5.7%) alone. These data show that NCX 4040 sensitizes colon cancer cell lines to the effect of antitumor drugs and suggests that their combination could be useful for the clinical management of colon cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-05-0536 | DOI Listing |
Cells
June 2023
Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.
Our recent studies show that the treatment of human ovarian tumor cells with NCX4040 results in significant depletions of cellular glutathione, the formation of reactive oxygen/nitrogen species and cell death. NCX4040 is also cytotoxic to several human colorectal cancer (CRC) cells in vitro and in vivo. Here, we examined the ferroptosis-dependent mechanism(s) of cytotoxicity of NCX4040 in HT-29 and K-RAS mutant HCT 116 colon cell lines.
View Article and Find Full Text PDFInt J Mol Sci
August 2022
Laboratory of Signal Transduction, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
NCX4040, the non-steroidal anti-inflammatory-NO donor, is cytotoxic to several human tumors, including ovarian tumor cells. We have found that NCX4040 is also cytotoxic against both OVCAR-8 and its adriamycin resistant (NCI/ADR-RES) tumor cell lines. Here, we have examined mechanism(s) for the cytotoxicity of NCX4040 in OVCAR-8 and NCI/ADR-RES cell lines.
View Article and Find Full Text PDFCancers (Basel)
April 2021
Laboratory of Toxicology and Toxicokinetic, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
The emergence of multidrug resistance (MDR) in the clinic is a significant problem for a successful treatment of human cancers. Overexpression of various ABC transporters (P-gp, BCRP and MRP's), which remove anticancer drugs in an ATP-dependent manner, is linked to the emergence of MDR. Attempts to modulate MDR have not been very successful in the clinic.
View Article and Find Full Text PDFFree Radic Biol Med
November 2019
Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA. Electronic address:
Non-steroidal anti-inflammatory drugs (NSAID) have shown promise as anticancer agents by inducing cell death apart from their antipyretic, anti-inflammatory and anti-thrombogenic effects. In our current study, we investigated the oxidative stress mediated cell death mechanism of a NSAID derivative NCX4040 (a nitric oxide (NO) releasing form of aspirin) in castration-resistant prostate cancer (CRPC) PC3 cell line. Our data revealed that NCX4040 is more potent than its parent compound aspirin or NO releasing compound DETA NONOate.
View Article and Find Full Text PDFMolecules
May 2019
Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile.
Nitric oxide-releasing aspirins (NO-aspirins) are aspirin derivatives that are safer than the parent drug in the gastrointestinal context and have shown superior cytotoxic effects in several cancer models. Despite the rationale for their design, the influence of nitric oxide (NO) on the effects of NO-aspirins has been queried. Moreover, different isomers exhibit varying antitumor activity, apparently related to their ability to release NO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!