The Rpg1 gene confers resistance to many pathotypes of the stem rust fungus Puccinia graminis f. sp. tritici and has protected barley from serious disease losses for over 60 years. Rpg1 encodes a constitutively expressed protein with two tandem kinase domains. Fractionation by differential centrifugation and aqueous two-phase separation of the microsome proteins located Rpg1 mainly in the cytosol but also in the plasma membrane and intracellular membranes. Recombinant Rpg1 autophosphorylates in vitro intramolecularly only serine and threonine amino acids with a preference for Mn(2+) cations and a K(m) of 0.15 and a V(max) of 0.47 nmol.min(-1).mg(-1) protein. The inability of wild-type Rpg1 to transphosphorylate a recombinant Rpg1 inactivated by site-directed mutation confirmed that Rpg1 autophosphorylation proceeds exclusively via an intramolecular mechanism. Site-directed mutagenesis of the two adjacent lysine residues in the ATP anchor of the two-kinase domains established that the first of the two tandem kinase domains is nonfunctional and that lysine 461 of the second domain is the catalytically active residue. Transgenic barley, expressing Rpg1 mutated in either the kinase 1 or 2 domains, were fully susceptible to P. graminis f. sp. tritici revealing requirement of both kinase domains for resistance. In planta-expressed Rpg1 mutant protein confirmed that mutation in domain 2, but not 1, rendered the protein incapable of autophosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464370PMC
http://dx.doi.org/10.1073/pnas.0602379103DOI Listing

Publication Analysis

Top Keywords

kinase domains
16
rpg1
10
stem rust
8
graminis tritici
8
tandem kinase
8
recombinant rpg1
8
protein
5
kinase
5
domains
5
subcellular localization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!