In this work we have combined biochemical and electrophysiological approaches to explore the modulation of rat ventricular transient outward K(+) current (I(to)) by calmodulin kinase II (CaMKII). Intracellular application of CaMKII inhibitors KN93, calmidazolium, and autocamtide-2-related inhibitory peptide II (ARIP-II) accelerated the inactivation of I(to), even at low [Ca(2+)]. In the same conditions, CaMKII coimmunoprecipitated with Kv4.3 channels, suggesting that phosphorylation of Kv4.3 channels modulate inactivation of I(to). Because channels underlying I(to) are heteromultimers of Kv4.2 and Kv4.3, we have explored the effect of CaMKII on human embryonic kidney (HEK) cells transfected with either of those Kvalpha-subunits. Whereas Kv4.3 inactivated faster upon inhibition of CaMKII, Kv4.2 inactivation was insensitive to CaMKII inhibitors. However, Kv4.2 inactivation became slower when high Ca(2+) was used in the pipette or when intracellular [Ca(2+)] ([Ca(2+)](i)) was transiently increased. This effect was inhibited by KN93, and Western blot analysis demonstrated Ca(2+)-dependent phosphorylation of Kv4.2 channels. On the contrary, CaMKII coimmunoprecipitated with Kv4.3 channels without a previous Ca(2+) increase, and the association was inhibited by KN93. These results suggest that both channels underlying I(to) are substrates of CaMKII, although with different sensitivities; Kv4.2 remain unphosphorylated unless [Ca(2+)](i) increases, whereas Kv4.3 are phosphorylated at rest. In addition to the functional impact that phosphorylation of Kv4 channels could cause on the shape of action potential, association of CaMKII with Kv4.3 provides a new role of Kv4.3 subunits as molecular scaffolds for concentrating CaMKII in the membrane, allowing Ca(2+)-dependent modulation by this enzyme of the associated Kv4.2 channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01373.2005 | DOI Listing |
Eur J Pharmacol
August 2020
Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. Electronic address:
Transient outward K current, I, contributes to cardiac action potential generation and is primarily carried by K4.3 (KCND3) channels. Two K4.
View Article and Find Full Text PDFToxicol Appl Pharmacol
October 2015
Laboratory of Cardiac Biophysics, Instituto de Fisiología and Facultad de Medicina, Universidad Autónoma de Puebla, Puebla, Mexico. Electronic address:
The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (Ito) and the molecular correlate, the Kv4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular Ito and of CHO cells co-transfected with human Kv4.
View Article and Find Full Text PDFHeart Rhythm
June 2007
Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA.
Background: Congenital mutations in the cardiac Na+ channel (encoded by SCN5A) underlie long QT syndrome type 3. The sea anemone peptide toxin ATX-II mimics the slowed inactivation kinetics characteristic of many long QT type 3 (LQT3) mutations. However, the I1768V SCN5A mutation is associated with faster recovery kinetics, for which there exists no known pharmacologic equivalent.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2006
University of California, San Diego, La Jolla, CA 92093-0412, USA.
The roles of sustained components of I(Na) and I(Kv43) in shaping the action potentials (AP) of myocytes isolated from the canine left ventricle (LV) have not been studied in detail. Here we investigate the hypothesis that these two currents can contribute substantially to heterogeneity of early repolarization and arrhythmic risk. Quantitative data from voltage-clamp and expression profiling experiments were used to complete meaningful modifications to an existing "local control" model of canine midmyocardial myocyte excitation-contraction coupling for epicardial and endocardial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!