Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: implications for immunity, autoimmune diseases, and apoptosis.

Nitric Oxide

Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Vet. Med., Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.

Published: November 2006

Nitric oxide plays a central role in the physiology and pathology of diverse tissues including the immune system. It is clear that the levels of nitric oxide must be carefully regulated to maintain homeostasis. Appropriate levels of nitric oxide derived from iNOS assist in mounting an effective defense against invading microbes. Conversely, inability to generate nitric oxide results in serious, even fatal, susceptibility to infections. Further, dysregulation or overproduction of nitric oxide has been implicated in the pathogenesis of many disorders, including atherosclerosis, neurodegenerative diseases, inflammatory autoimmune diseases, and cancer. Therefore, depending upon the levels of nitric oxide generated, the potential exists for nitric oxide to behave like a "double-edged" biological sword. Taking these issues into consideration, it is thus pivotal to understand the regulation of nitric oxide. Nitric oxide is regulated by many endogenous factors including hormones such as estrogens. While the effects of estrogen on the generation of nitric oxide in non-immune tissues are relatively well documented, the effect of estrogen on iNOS/nitric oxide in immune cells is only now becoming apparent. Our laboratory has recently shown that estrogen treatment of mice markedly upregulates the levels of iNOS mRNA, iNOS protein, and nitric oxide in activated splenocytes. This upregulation of nitric oxide is in part mediated through interferon-gamma (IFN-gamma), a pro-inflammatory cytokine that is enhanced by estrogen. These findings are important considering that estrogens are not only involved in regulation of normal immune responses, but also are implicated in many autoimmune and inflammatory diseases. To date, there are no reviews on the effects of estrogen on immune tissue-derived nitric oxide and therefore this review will address this critical gap in the literature. Given the increasing importance of immune-tissue-derived iNOS in health and disease, studies on estrogen-induced regulation of iNOS may offer a better understanding of diseases and aid in devising new therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2006.03.009DOI Listing

Publication Analysis

Top Keywords

nitric oxide
60
oxide
16
nitric
15
levels nitric
12
regulation nitric
8
immune cells
8
autoimmune diseases
8
effects estrogen
8
estrogen
6
inos
6

Similar Publications

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Background And Aim: In the context of gastrointestinal diseases, the role of monoacylglycerol lipase (MAGL) is significant. Therefore, the objective of this study was to examine the protective effects of MAGL inhibition using JZL184 in rat models of severe acute pancreatitis (SAP) and to explore its mechanism.

Methods: In this study, a rat model of SAP was established, and the rats were divided into three groups for treatment: the Control group (CON), the SAP group (SAP), and the SAP group treated with JZL184 (JZL184).

View Article and Find Full Text PDF

In this study, Chinese yam polysaccharides (CYPs) were fermented using M616, and changes in the chemical composition, structure, and anti-inflammatory activity of CYPs before and after fermentation were investigated. The carbohydrate content of M616-fermented CYP (CYP-LP) increased from 71.03% ± 2.

View Article and Find Full Text PDF

Management of traumatic brain injury and acute respiratory distress syndrome-What evidence exists? A scoping review.

J Intensive Care Soc

January 2025

Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA.

Introduction: Up to 20% of patients with traumatic brain injury (TBI) develop acute respiratory distress syndrome (ARDS), which is associated with increased odds of mortality. Guideline-based treatment for ARDS includes "lung protective" ventilation strategies, some of which are in opposition to "brain protective" strategies used for ventilation with patients with TBI. We conducted a scoping review of ventilation management strategies with clinical outcomes among patients with TBI and ARDS.

View Article and Find Full Text PDF

Recent advances in the role of gasotransmitters in necroptosis.

Apoptosis

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.

Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!