1. The ability of cromakalim to modulate several different types of neuroeffector transmission has been assessed in guinea-pig isolated trachea. 2. In trachea treated with propranolol (10(-6) M) and indomethacin (2.8 x 10(-6) M), stimulation of the extrinsic vagal nerves evoked contractions which were blocked by hexamethonium (5 x 10(-4) M) or by tetrodotoxin (TTX; 10(-6) M). Cromakalim (10(-5) M) caused a two fold rightward shift of the frequency-response curve. 3. In carinal trachea treated with propranolol and indomethacin, transmural stimulation evoked an initial, rapid contraction followed by a more sustained secondary contraction. The initial, rapid contractile response was virtually ablated by atropine (10(-6) M) or by TTX but was resistant to hexamethonium. Cromakalim (10(-8)-10(-5) M) caused a concentration-dependent rightward shift of the frequency-response curve for the initial contraction. 4. In carinal trachea treated with atropine, propranolol and indomethacin, transmural stimulation evoked only the secondary (non-adrenergic, non-cholinergic (NANC] contractile responses. These were markedly reduced by TTX but were resistant to hexamethonium. Cromakalim (10(-8)-10(-5) M) suppressed the NANC contractile responses in a concentration-dependent manner. This action could be offset by glibenclamide (10(-6) M). 5. In trachea treated with atropine, histamine (10(-4) M), propranolol and indomethacin, transmural stimulation evoked NANC relaxant responses. Cromakalim (up to 10(-5) M) was without effect on the frequency-response curve for the stimulation of NANC inhibitory nerves. 6. Tested on trachea bathed by drug-free Krebs solution, cromakalim (10(-7)-10(-5) M) caused concentration-dependent suppression of tracheal tone. In trachea treated with propranolol and indomethacin, cromakalim (10- 7-1O- 5 M) caused concentration-dependent antagonism of acetylcholine (ACh). In trachea treated with atropine, propranolol and indomethacin, cromakalim (up to 10- 5M) failed to antagonize effects of either histamine or substance P.7. It is concluded that cromakalim can inhibit cholinergic (excitatory) neuroeffector transmission in the trachea but only at a concentration having demonstrable inhibitory activity against the action of exogenous ACh and the spontaneous tone of the airways smooth muscle. In contrast, cromakalim may depress NANC excitatory (putative peptidergic) neuroeffector transmission at a concentration below that exerting inhibitory activity on airways smooth muscle. Cromakalim does not concurrently depress NANC inhibitory neuroeffector transmission. Depression of NANC excitatory neuroeffector transmission could explain the ability of cromakalim to suppress airway hyperreactivity or bronchial asthma at doses lacking direct relaxant effect on airways smooth muscle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1908296 | PMC |
http://dx.doi.org/10.1111/j.1476-5381.1991.tb12417.x | DOI Listing |
BMC Cancer
January 2025
Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, P. R. China.
Introduction: The core objective of this study was to precisely locate metastatic lymph nodes, identify potential areas in nasopharyngeal carcinoma patients that may not require radiotherapy, and propose a hypothesis for reduced target volume radiotherapy on the basis of these findings. Ultimately, we reassessed the differences in dosimetry of organs at risk (OARs) between reduced target volume (reduced CTV2) radiotherapy and standard radiotherapy.
Methods And Materials: A total of 209 patients participated in the study.
Pediatr Pulmonol
January 2025
Department of Pediatric Internal Medicine, La Paz University Hospital, Madrid, Spain.
Background And Objectives: Bacteria in tracheal aspirate samples from children with tracheostomy can indicate infection or colonization. Our study aimed to determine whether bacterial counts > 10 or > 10 CFU (colony forming units)/mL are more frequently associated with tracheobronchitis. Additionally, we aimed to examine the association between bacterial count and variables distinguishing colonization from infection in tracheobronchitis, along with clinical severity indicators.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Ultrasound, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
Objective: To compare the clinical outcomes of patients with unifocal paratracheal papillary thyroid microcarcinoma (PTMC) after thermal ablation (TA) vs. partial thyroidectomy (PT).
Materials And Methods: This retrospective multicenter study included 436 patients with unifocal, clinical N0 paratracheal PTMC who underwent TA (210 patients) or PT (236 patients) between June 2014 and December 2020.
Am J Transl Res
December 2024
Respiratory and Critical Care Medicine, Nan'an City Hospital Quanzhou 362399, Fujian, China.
Objective: To evaluate the application value of CT diagnostic technology based on the Shukun Imaging Post-Processing System for early screening and diagnosis of lung cancer.
Methods: A total of 35 patients diagnosed with lung cancer postoperatively and 53 patients with benign nodules were included in this retrospective study, all of whom were treated in the Department of Thoracic and Cardiovascular Surgery of the Second Affiliated Hospital of Fujian Medical University from January 2020 to December 2023. All patients underwent chest spiral CT examinations.
Regen Ther
June 2024
Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.
Introduction: Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!