We investigated the reason for carbohydrate retention in the stem of rice (Oryza sativa L.) at full-ripe stage in a near-isogenic line (NIL63) carrying prl5, which confers lodging resistance without yield loss. NIL63 showed higher lodging resistance than Nipponbare (control) without reduced yield. At heading, the carbohydrate content in the NIL63 stem (culm and leaf sheathes) was the same as in Nipponbare. At 2 weeks after heading, the carbohydrate content in NIL63 was significantly higher than in Nipponbare. At 4 weeks after heading, the carbohydrate content in NIL63 had decreased to near the level in Nipponbare. At 6 weeks after heading, NIL63 showed higher carbohydrate reaccumulation. Chlorophyll degradation in the leaf blades of NIL63 was slower, and the chlorophyll content at 6 weeks after heading was higher than in Nipponbare. These results suggest that the delay in leaf senescence by prl5 results in carbohydrate reaccumulation in the stem after grain filling, increasing lodging resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2006.02.004DOI Listing

Publication Analysis

Top Keywords

lodging resistance
16
weeks heading
16
carbohydrate reaccumulation
12
nil63 higher
12
heading carbohydrate
12
carbohydrate content
12
content nil63
12
nipponbare weeks
12
higher nipponbare
8
carbohydrate
7

Similar Publications

The high mortality rate from hepatocellular carcinoma (HCC) is due primarily to challenges in early diagnosis and the development of drug resistance in advanced stages. Many first-line chemotherapeutic drugs induce ferroptosis, a form of programmed cell death dependent on ferrous iron-mediated oxidative stress, suggesting that drug resistance and ensuing tumor progression may in part stem from reduced ferroptosis. Since circular RNAs (circRNAs) have been shown to influence tumor development, we examined whether specific circRNAs may regulate drug-induced ferroptosis in HCC.

View Article and Find Full Text PDF

Background: The development of superior summer maize hybrids with high-yield potential and essential agronomic traits, such as resistance to lodging, is crucial for ensuring the sustainability of maize cultivation. However, the task of identifying and breeding genotypes that exhibit exceptional performance and stability across multiple environment conditions, while considering a wide range of traits, is challenging. Given the backdrop of global climate change, understanding which climate variables and soil properties most significantly impact environmental similarity is essential for selecting hybrids with improved adaptability to regions with diverse climatic and soil conditions.

View Article and Find Full Text PDF

The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases.

View Article and Find Full Text PDF

Dwarfism is a major trait for developing lodging-resistant rice cultivars. Gamma irradiation-induced mutagenesis has proven to be an effective method for generating dwarf rice mutants. In this research, we isolated a dwarf mutant from Anna R (4) in the M generation and subsequently stabilized the trait through successive selfing of progeny across the M-M generations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!