Background: Inguinal hernias are usually caused by a congenital defect, which occurs as a weakness of the inguinal canal. Porcine beta-glucuronidase gene (GUSB) was chosen as functional candidate gene because of its involvement in degradation of hyaluronan within gubernacular tissue during descent of testes. Since a genome-wide linkage analysis approach has shown evidence that two regions on porcine chromosome 3 (SSC 3) are involved in the inheritance of hernia inguinalis/scrotalis in German pig breeds, GUSB also attained status as a positional candidate gene by its localization within a hernia-associated chromosomal region.
Results: A contig spanning 17,157 bp, which contains the entire GUSB, was assembled. Comparative sequence analyses were conducted for the GUSB gene locus. Single nucleotide polymorphisms (SNPs) located within the coding region of GUSB were genotyped in 512 animals. Results of transmission disequilibrium test (TDT) for two out of a total of five detected SNPs gave no significant association with the outcome of hernia in pigs.
Conclusion: On the basis of our studies we are able to exclude the two analyzed SNPs within the porcine GUSB gene as causative for the transmission of inguinal hernia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1471780 | PMC |
http://dx.doi.org/10.1186/1746-6148-2-14 | DOI Listing |
Pharmacol Res Perspect
February 2025
Department of Pharmaceutical Health Care and Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
Doxorubicin (DOXO) has long been used clinically and remains a key drug in cancer therapy. DOXO-induced cardiomyopathy (DICM) is a chronic and fatal complication that severely limits the use of DOXO. However, there are very few therapeutic agents for DICM, and there is an urgent need to identify those that can be used for a larger number of patients.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
Carbon monoxide (CO) oxidising microorganisms are present in volcanic deposits throughout succession, with levels of vegetation and soil influencing the communities present. Carboxydovores are a subset of CO oxidisers that use CO as an energy source, which raises questions about the physiological and metabolic features that make them more competitive in harsh volcanic ecosystems. To address these questions, samples were taken from volcanic strata formed by eruptions from Calbuco Volcano (Chile) in 2015 (tephra) and 1917 (soil).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral and Maxillofacial Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
Oral submucous fibrosis (OSF) is a chronic, progressive, and fibrotic condition of the oral mucosa that carries an elevated risk of malignant transformation. We aimed to identify and validate novel genes associated with the regulation of epithelial-to-mesenchymal transition (EMT) in OSF. Genes regulating EMT were identified through differential gene expression analysis, using a LogFC threshold of -1 and + 1 and a padj value < 0.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!