Analysis of viral strand sequence data and viral replication capacity could potentially lead to biological insights regarding the replication ability of HIV-1. Determining specific target codons on the viral strand will facilitate the manufacturing of target-specific antiretrovirals. Various algorithmic and analysis techniques can be applied to this application. In this paper, we apply two techniques to a data set consisting of 317 patients, each with 282 sequenced protease and reverse transcriptase codons. The first application is recently developed multiple testing procedures to find codons which have significant univariate associations with the replication capacity of the virus. A single-step multiple testing procedure (Pollard and van der Laan 2003) method was used to control the family wise error rate (FWER) at the five percent alpha level as well as the application of augmentation multiple testing procedures to control the generalized family wise error (gFWER) or the tail probability of the proportion of false positives (TPPFP). We also applied a data adaptive multiple regression algorithm to obtain a prediction of viral replication capacity based on an entire mutant/non-mutant sequence profile. This is a loss-based, cross-validated Deletion/Substitution/Addition regression algorithm (Sinisi and van der Laan 2004), which builds candidate estimators in the prediction of a univariate outcome by minimizing an empirical risk. These methods are two separate techniques with distinct goals used to analyze this structure of viral data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2202/1544-6115.1110 | DOI Listing |
Sci Prog
January 2025
Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.
Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.
Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.
Curr Drug Targets
January 2025
Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
Acne vulgaris is the 8th most commonly prevailing skin disorder worldwide. Its pervasiveness has been predominant in juveniles, especially males, during adolescence and in females during adulthood. The lifestyle and nutrition adopted have been significantly reported to impact the occurrence and frequency of acne.
View Article and Find Full Text PDFFront Chem
January 2025
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
Bisphenol A (BPA) poses a significant environmental threat due to its widespread use as an industrial chemical and its classification as an environmental endocrine disruptor. The urgent need for effective BPA removal has driven research toward innovative solutions. In this study, we present the synthesis and application of a novel 2D-3D spherically hierarchical ZnInS (ZIS) photocatalyst for the photocatalytic degradation of BPA under visible light for the first time.
View Article and Find Full Text PDFRegen Biomater
December 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
The detection of residual nuclei in decellularized extracellular matrix (dECM) biomaterials is critical for ensuring their quality and biocompatibility. However, current evaluation methods have limitations in addressing impurity interference and providing intelligent analysis. In this study, we utilized four staining techniques-hematoxylin-eosin staining, acetocarmine staining, the Feulgen reaction and 4',6-diamidino-2-phenylindole staining-to detect residual nuclei in dECM biomaterials.
View Article and Find Full Text PDFFront Neurosci
January 2025
Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council (CNR), Cosenza, Italy.
Introduction: Temporal lobe epilepsy is the most common form of focal epilepsy, often associated with cognitive impairments, particularly in memory functions, and depression. Sex and APOE ε4 genotype play a crucial role in modulating cognitive outcomes and depression in various neurological conditions like Alzheimer's disease. However, the combined effects of APOE genotype and sex on cognitive performance and depression in temporal lobe epilepsy have not been previously investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!