Similar Publications

Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or removal from the environment. A challenge in discovering plastic-binding peptides is the vast combinatorial space of possible peptides (, over 10 for 12-mer peptides), which far exceeds the sample sizes typically reachable by experiments or biophysics-based computational methods.

View Article and Find Full Text PDF

In this study, kaolinite-poly(urea-formaldehyde) was successfully prepared through the polymerization of urea intercalated within the kaolinite structure. Polymerization was carried out under ambient conditions by immersing kaolinite-urea in formaldehyde. Evidence of urea intercalation and polymerization was obtained from FTIR, XRD, and thermal analysis (TG-DSC).

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.

View Article and Find Full Text PDF

In this study, the interaction of waste snake skin (Periostracum serpentis), a keratin-based biowaste composite material, with uranyl ions, the predominant form of uranium in aqueous solutions, was investigated to determine whether it could be used as an adsorbent. SEM, FTIR, BET and EDX analyses were performed to elucidate the material's surface and structural properties. The effects of the amount of adsorbent, uranyl ion concentration, pH, temperature, and adsorption time were investigated to optimize uranium removal with this material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!