Flow cytometry analysis of gap junction-mediated cell-cell communication: advantages and pitfalls.

Cytometry A

Laboratório de Comunicação Celular, Departamento de Imunologia, Instituto Oswaldo Cruz, Fundação, Rio de Janeiro, Brasil.

Published: June 2006

Background: Since the first morphological description of the gap junctions use electron microscopy, a considerable number of techniques has been introduced to evaluate gap junction channel functionality, many of which use dye transfer techniques, such as dye injection and fluorescent dye transfer, analyzed by flow cytometry.

Methods: To analyze dye transfer, generally one population of cells is incubated with calcein-AM (0.5 microM) for 30 min at 37 degrees C, and the other population was incubated with the lipophilic dye DiIC(18) (3) (10 microM) for 1 h at 37 degrees C; after incubation, these cells were washed five times with PBS and cocultured for different times, and then the dye transfer was analyzed by flow cytometry.

Results: In this short overview, we focus on some advantages and disadvantages of flow cytometry as a technique to investigate gap junction-mediated intercellular communication (GJIC). In addition, we point out some technical pitfalls that we have encountered when applying this technique to study gap junctions in immune system cells.

Conclusions: Analysis of fluorescent dye transfer by flow cytometry is a useful tool to investigate GJIC. However, some points must be taken into consideration before using this methodology, which are discussed herein.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.20255DOI Listing

Publication Analysis

Top Keywords

dye transfer
20
flow cytometry
12
gap junction-mediated
8
gap junctions
8
fluorescent dye
8
transfer analyzed
8
analyzed flow
8
dye
7
flow
5
gap
5

Similar Publications

Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(-dimethylamino)propyl)-2,7-fluorene]--2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy.

View Article and Find Full Text PDF

Energy Aggregation for Illuminating Upconversion Multicolor Emission Based on Ho Ions.

ACS Appl Mater Interfaces

January 2025

School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.

View Article and Find Full Text PDF

Oral cancer detection is based on biopsy histopathology, however with digital microscopy imaging technology there is real potential for rapid multi-site imaging and simultaneous diagnostic analysis. Fifty-nine patients with oral mucosal abnormalities were imaged in vivo with a confocal laser endomicroscope using the contrast agents acriflavine and fluorescein for the detection of oral epithelial dysplasia and oral cancer. To analyse the 9168 images frames obtained, three tandem applied pre-trained Inception-V3 convolutional neural network (CNN) models were developed using transfer learning in the PyTorch framework.

View Article and Find Full Text PDF

Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.

View Article and Find Full Text PDF

Cellulose-based materials are promising adsorbents for pollutants and other classes of compounds. Here, we report the preparation of hydrogels via chemical cross-linking of microcrystalline cellulose oxidized by the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). The cross-linking process was carried out in the presence of modifiers such as β-cyclodextrin in order to insert hydrophobic cavities or κ-carrageenan due to the presence of negative charges along the molecular chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!