Recent research on hydrogenases has been notably motivated by a desire to utilize these remarkable hydrogen oxidation catalysts in biotechnological applications. Progress in the development of such applications is substantially hindered by the oxygen sensitivity of the majority of hydrogenases. This problem tends to inspire the study of organisms such as Ralstonia eutropha H16 that produce oxygen-tolerant [NiFe]-hydrogenases. R. eutropha H16 serves as an excellent model system in that it produces three distinct [NiFe]-hydrogenases that each serve unique physiological roles: a membrane-bound hydrogenase (MBH) coupled to the respiratory chain, a cytoplasmic, soluble hydrogenase (SH) able to generate reducing equivalents by reducing NAD+ at the expense of hydrogen, and a regulatory hydrogenase (RH) which acts in a signal transduction cascade to control hydrogenase gene transcription. This review will present recent results regarding the biosynthesis, regulation, structure, activity, and spectroscopy of these enzymes. This information will be discussed in light of the question how do organisms adapt the prototypical [NiFe]-hydrogenase system to function in the presence of oxygen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000091564 | DOI Listing |
Microb Cell Fact
December 2024
VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150, Espoo, Finland.
Background: Biocatalysis offers a potentially greener alternative to chemical processes. For biocatalytic systems requiring cofactor recycling, hydrogen emerges as an attractive reducing agent. Hydrogen is attractive because all the electrons can be fully transferred to the product, and it can be efficiently produced from water using renewable electricity.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R.
View Article and Find Full Text PDFMicrobes Environ
September 2024
Graduate School of Science, Technology and Innovation, Kobe University.
Extracellular membrane vesicles (MVs) caused by the artificial production of polyhydroxybutyrate (PHB) were previously detected in Escherichia coli. We herein observed MV biogenesis in the mutant strain (-PHB) of the natural PHB producer, Cupriavidus necator H16. This inverse relationship was revealed through comparative electron microscopic ana-lyses of wild-type and mutant strains.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2024
School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.
The "knallgas" bacterium is attracting interest due to its extremely versatile metabolism. can use hydrogen or formic acid as an energy source, fixes CO the Calvin-Benson-Bassham (CBB) cycle, and grows on organic acids and sugars. Its tripartite genome is notable for its size and duplications of key genes (CBB cycle, hydrogenases, and nitrate reductases).
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
July 2024
Institute of Technical Microbiology, Hamburg University of Technology, 21073, Hamburg, Germany.
The production of platform chemicals from renewable energy sources is a crucial step towards a post-fossil economy. This study reports on the production of acetoin and 2,3-butanediol heterotrophically with fructose as substrate and autotrophically from CO as carbon source, H as electron donor and O as electron acceptor with Cupriavidus necator. In a previous study, the strain was developed for the production of acetoin with high carbon efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!