Enhanced excitability and suppression of A-type K+ current of pancreas-specific afferent neurons in a rat model of chronic pancreatitis.

Am J Physiol Gastrointest Liver Physiol

Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine, Univ. of Texas Medical Branch, Galveston, Texas 77555, USA.

Published: September 2006

Chronic pancreatitis (CP) is a relatively common disorder, characterized by glandular insufficiency and chronic, often intractable, pain. The mechanism of pain in CP is poorly understood. We have previously developed a model of trinitrobenzene sulphonic acid (TNBS)-induced CP that results in nociceptive sensitization in rats. This study was designed to examine changes in the excitability and alteration of voltage-gated K(+) currents of dorsal root ganglia (DRG) neurons innervating the pancreas. CP was induced in adult rats by an intraductal injection of TNBS. DRG neurons innervating the pancreas were identified by 1,1'-dioleyl-3,3,3',3-tetramethylindocarbocyanine methanesulfonate fluorescence labeling. Perforated patch-clamp recordings were made from acutely dissociated DRG neurons from control and TNBS-treated rats. Pancreas-specific DRG neurons displayed more depolarized resting potentials in TNBS-treated rats than those in controls (P < 0.02). Some neurons from the TNBS-treated group exhibited spontaneous firings. TNBS-induced CP also resulted in a dramatic reduction in rheobase (P < 0.05) and a significant increase in the number of action potentials evoked at twice rheobase (P < 0.05). Under voltage-clamp conditions, neurons from both groups exhibited transient A-type (I(A)) and sustained outward rectifier K(+) currents (I(K)). Compared with controls, the average I(A) but not the average I(K) density was significantly reduced in the TNBS-treated group (P < 0.05). The steady-state inactivation curve for I(A) was displaced by approximately 20 mV to more hyperpolarized levels after the TNBS treatment. These data suggest that TNBS treatment increases the excitability of pancreas-specific DRG neurons by suppressing I(A) density, thus identifying for the first time a specific molecular mechanism underlying chronic visceral pain and sensitization in CP.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00560.2005DOI Listing

Publication Analysis

Top Keywords

drg neurons
20
neurons
8
chronic pancreatitis
8
neurons innervating
8
innervating pancreas
8
tnbs-treated rats
8
pancreas-specific drg
8
tnbs-treated group
8
rheobase 005
8
tnbs treatment
8

Similar Publications

Protocol to study neuronal membrane proteasome function in mouse peripheral sensory neurons.

STAR Protoc

January 2025

Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA; Center for Translational Research and Education, Health Sciences Campus, 2160 South First Avenue, Maywood, IL 60153, USA. Electronic address:

Neuronal membrane proteasomes (NMPs) are expressed on a subset of somatosensory dorsal root ganglion (DRG) neurons and influence mechanical and pain sensitivity. Here, we present a protocol for studying NMP function in mouse peripheral sensory neurons. We describe steps for procuring and culturing primary DRG neurons.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.

View Article and Find Full Text PDF

Purpose: To investigate the therapeutic potential of eliminating insulin-like growth factor-binding protein 5 (IGFBP5) expression in improving erectile function in mice with cavernous nerve injury (CNI)-induced erectile dysfunction (ED).

Materials And Methods: Eight-week-old male C57BL/6 mice were divided into four groups: a sham-operated group and three CNI-induced ED groups. The CNI-induced ED groups were treated with intracavernous injections 3 days before the CNI procedure.

View Article and Find Full Text PDF

Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury.

Cell Biosci

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.

Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!