We recently reported a novel class of compounds, represented by 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CD-PPB), that act as positive allosteric modulators (potentiators) of metabotropic glutamate receptor (mGluR) subtype 5. Studies of CDPPB analogs revealed that some compounds in this series serve also as positive allosteric modulators of mGluR1. Although CDPPB is selective for mGluR5 relative to other mGluR subtypes, several CDPPB analogs also showed 2.5-fold potentiation of glutamate-induced calcium transients in cells expressing mGluR1 at 10 muM, with 4-nitro-N-(1,4-diphenyl-1H-pyrazol-5-yl)benzamide (VU-71) being selective for mGluR1. In previous studies, we found that two structural classes of mGluR5-selective allosteric potentiators, including CDPPB, share a common binding site with the allosteric mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine. Negative allosteric modulators of mGluR1, regardless of structural class, have been reported to bind to a common allosteric antagonist site on this receptor. However, neither the novel CDPPB analogs nor previously identified allosteric mGluR1 potentiators [e.g., (S)-2-(4-fluorophenyl)-1-(toluene-4-sulfonyl)pyrrolidine (Ro 67-7476), ethyl diphenylacetylcarbamate (Ro 01-6128), and butyl (9H-xanthene-9-carbonyl)carbamate (Ro 67-4853)] displaced the binding of [(3)H]1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-2-phenyl-1-ethanone (R214127), a high-affinity radioligand for the allosteric antagonist site on mGluR1 at concentrations several orders of magnitude higher than those required to induce allosteric potentiation of mGluR1 responses. These data suggest that allosteric potentiators of mGluR1 act at a site that is distinct from that of allosteric antagonists of mGluR1. Site-directed mutagenesis revealed that valine at position 757 in transmembrane V of mGluR1a is crucial for the activity of multiple classes of allosteric mGluR1 potentiators.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.105.021857DOI Listing

Publication Analysis

Top Keywords

allosteric modulators
20
allosteric
14
positive allosteric
12
cdppb analogs
12
mglur1
10
novel class
8
metabotropic glutamate
8
glutamate receptor
8
site distinct
8
negative allosteric
8

Similar Publications

Cannabichromene from full-spectrum hemp extract exerts acute anti-seizure effects through allosteric activation of GABA receptors.

Fundam Res

November 2024

State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.

The approval of Epidiolex, an anti-epileptic drug containing cannabidiol (CBD) as its active component, has brought hope to patients with refractory epilepsy. However, the anti-seizure effect of full-spectrum hemp extract (HE), a CBD-enriched hemp oil, remains unclear. In this study, we investigated the anti-seizure effect of HE using drug-induced seizure models.

View Article and Find Full Text PDF

Allopregnanolone (Allo) is a positive allosteric modulator of the GABA receptor, and amiloride (Ami) is a competitive antagonist of the GABA receptor. The purpose of this work was to study the combined effect of Allo and Ami on functional activity of GABA receptor. The GABA-induced chloride current (I) was measured in isolated Purkinje cells of rat cerebellum using the patch-clamp technique and a system of fast application.

View Article and Find Full Text PDF

Ligand docking in the sigma-1 receptor compared to the sigma-1 receptor-BiP complex and the effects of agonists and antagonists on C. elegans lifespans.

Biomed Pharmacother

December 2024

Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand; Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand. Electronic address:

Model organisms are commonly used to study human diseases; we set out to understand the relevance of several model organisms with relation to the σ1R protein. The study explored the interactions of σ1R with various agonists, antagonists across different species. Ligand and protein-protein (σ1R-BiP) docking approaches were used to understand the significance of σ1R in modulating neuroprotective mechanisms and its potential role in Alzheimer's.

View Article and Find Full Text PDF

Treatment for major depressive disorder (depression) often has partial efficacy and a large portion of patients are treatment resistant. Recent studies implicate reduced somatostatin (SST) interneuron inhibition in depression, and new pharmacology boosting this inhibition via positive allosteric modulators of α5-GABAA receptors (α5-PAM) offers a promising effective treatment. However, testing the effect of α5-PAM on human brain activity is limited, meriting the use of detailed simulations.

View Article and Find Full Text PDF

Ranking Single Fluorescent Protein-Based Calcium Biosensor Performance by Molecular Dynamics Simulations.

J Chem Inf Model

December 2024

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

Genetically encoded fluorescent biosensors (GEFBs) have become indispensable tools for visualizing biological processes A typical GEFB is composed of a sensory domain (SD) that undergoes a conformational change upon ligand binding or enzymatic reaction; the SD is genetically fused with a fluorescent protein (FP). The changes in the SD allosterically modulate the chromophore environment whose spectral properties are changed. Single fluorescent (FP)-based biosensors, a subclass of GEFBs, offer a simple experimental setup; they are easy to produce in living cells, structurally stable, and simple to use due to their single-wavelength operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!