The relationships among vascular geometry, hemodynamics, and plaque development in the coronary arteries are complex and not yet well understood. This paper reports a methodology for the quantitative analysis of in vivo coronary morphology and hemodynamics, with particular emphasis placed on the critical issues of image segmentation and the automated classification of disease severity. We were motivated by the observation that plaque more often developed at the inner curvature of a vessel, presumably due to the relatively lower wall shear stress at these locations. The presented studies are based on our validated methodology for the three-dimensional fusion of intravascular ultrasound (IVUS) and X-ray angiography, introducing a novel approach for IVUS segmentation that incorporates a robust, knowledge-based cost function and a fully optimal, three-dimensional segmentation algorithm. Our first study shows that circumferential plaque distribution depends on local vessel curvature in the majority of vessels. The second study analyzes the correlation between plaque distribution and wall shear stress in a set of 48 in vivo vessel segments. The results were conclusive for both studies, with a stronger correlation of circumferential plaque thickness with local curvature than with wall shear stress. The inverse relationship between local wall shear stress and plaque thickness was significantly more pronounced (p<0.025) in vessel cross sections exhibiting compensatory enlargement (positive remodeling) without luminal narrowing than when the full spectrum of disease severity was considered. The inverse relationship was no longer observed in vessels where less than 35% of vessel cross sections remained without luminal narrowing. The findings of this study confirm, in vivo, the hypothesis that relatively lower wall shear stress is associated with early plaque development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590653PMC
http://dx.doi.org/10.1016/j.media.2006.03.002DOI Listing

Publication Analysis

Top Keywords

wall shear
20
shear stress
20
plaque development
8
vessel curvature
8
curvature wall
8
coronary arteries
8
x-ray angiography
8
intravascular ultrasound
8
circumferential plaque
8
plaque distribution
8

Similar Publications

Superconductivity from Domain Wall Fluctuations in Sliding Ferroelectrics.

Phys Rev Lett

December 2024

Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.

View Article and Find Full Text PDF

Pulmonary artery (PA) flow analysis is crucial for understanding the progression of pulmonary hypertension (PH). We hypothesized that PA flow characteristics vary according to PH etiology. In this study, we used 4D flow cardiovascular magnetic resonance imaging (CMR) to compare PA flow velocity and wall shear stress (WSS) between patients with pulmonary arterial hypertension (PAH) and those with heart failure with preserved ejection fraction and pulmonary hypertension (PH-HFpEF).

View Article and Find Full Text PDF

Introduction: In-stent restenosis remains a significant challenge in coronary artery interventions. This study aims to explore the relationship between exercise intensity and stent design, focusing on the coupled response of the stent structure and hemodynamics at different exercise intensities.

Methods: A coupled balloon-stent-plaque-artery model and a fluid domain model reflecting structural deformation were developed to investigate the interaction between coronary stents and stenotic vessels, as well as their impact on hemodynamics.

View Article and Find Full Text PDF

High-fidelity computational fluid dynamics modeling to simulate perfusion through a bone-mimicking scaffold.

Comput Biol Med

December 2024

University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering, Boulder, CO, USA; Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA. Electronic address:

Breast cancer cells sense shear stresses in response to interstitial fluid flow in bone and induce specific biological responses. Computational fluid dynamics models have been instrumental in estimating these shear stresses to relate the cell mechanoresponse to exact mechanical signals, better informing experiment design. Most computational models greatly simplify the experimental and cell mechanical environments for ease of computation, but these simplifications may overlook complex cell-substrate mechanical interactions that significantly change shear stresses experienced by cells.

View Article and Find Full Text PDF

Ultrasonic time-of-flight diffraction (TOFD) technique is applied to non-destructive testing in engineering, but the dead zone influences its applicable range. Alternative TOFD techniques adopt the indirect diffracted waves having long propagation times to decouple from the lateral wave and detect near-surface defects. It should be noted that the applicability of these diffracted waves varies with parameter conditions employed for detection, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!