A novel antimicrobial epoxide, 2-isopropyl-5-(3-phenyl-oxiranyl)-benzene-1,3-diol (1), was identified from larval Galleria mellonella infected by a symbiotically associated bacterium-nematode complex (Photorhabdus luminescens C9-Heterorhabditis megidis 90). Its structure was determined with spectroscopic analysis and confirmed by chemical synthesis starting from a known antibiotic, 2-isopropyl-5-(2-phenylethenyl)-benzene-1,3-diol (2). Epoxide 1 was active against Bacillus subtilis, Escherichia coli, Streptococcus pyogenes, and a drug-resistant, clinical strain of Staphylococcus aureus (RN4220) with minimum inhibitory concentrations in the range of 6.25-12.5 microg/ml. Epoxide 1 was cytotoxic against human cancer cell lines, MCF-7 wt, H460, and Jurkat, with GI(50) of 2.14, 0.63, and 0.42 microM, respectively, but was less toxic on normal, mouse splenic lymphocytes with a GI(50) of 45.00 microM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2006.01.025 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.
Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).
Mycobiology
December 2024
Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egyp.
Introduction: An efficient procedure was reported for the synthesis of novel hybrid dithiazoles 7 and thiazoles 15, in good yields, by applying hydrazonyl chlorides 4 with thiocarbohydrazone derivatives 3 and 12.
Methods: The thiazole derivatives were evaluated for their antimicrobial and antioxidant activities.
Results: According to the results, thiazoles revealed marked potency as antimicrobial and antioxidant agents.
BMC Vet Res
January 2025
Materials Synthesis Laboratory, Carbon Tech Industrial Group, Carbon Tech, Tehran, Iran.
Background: Strongyle nematodes pose a major challenge in veterinary parasitology, causing significant economic losses in livestock due to resistance to conventional treatments. Current anthelmintics, like Ivermectin, often encounter resistance issues. This study aims to address these gaps by synthesizing Carbon Quantum Dots (CQDs) and Copper-Doped CQDs (Cu@CQDs) using glucose extract, and evaluating their nematicidal properties against strongyles in vitro.
View Article and Find Full Text PDFNPJ Antimicrob Resist
August 2024
Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!