Porcine FSH/LH stimulation successfully induced development of multiple large (>or=4mm) antral follicles in 10 of 11 common wombats. A mean of 5.5 metaphase II (MII) oocytes were aspirated from wombats that were stimulated during the follicular phase of the oestrous cycle (n=3) or after pouch young removal (n=3). Three subadults (n=3) and two anoestrus adults did not produce MII oocytes despite pFSH/pLH administration. In vitro maturation of immature oocytes at the time of aspiration doubled the number of MII oocytes that could be collected from pFSH/pLH stimulated wombats. Immature oocytes with cumulus attached, matured more readily to the MII stage than immature oocytes without cumulus. Following intracytoplasmic sperm injection (ICSI), approximately 5% of the oocytes that were MII at the time of collection cleaved. Approximately 5% of those that were matured by in vitro maturation (IVM) formed two polar bodies following ICSI, although they not cleave. Parthenogenesis cannot be excluded. This demonstrates that assisted reproductive technologies may be applicable to the common wombat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2006.03.005DOI Listing

Publication Analysis

Top Keywords

vitro maturation
12
mii oocytes
12
immature oocytes
12
intracytoplasmic sperm
8
sperm injection
8
oocytes
8
oocytes collected
8
common wombats
8
oocytes cumulus
8
mii
5

Similar Publications

Kisspeptin and Neurokinin B: roles in reproductive health.

Physiol Rev

January 2025

Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.

Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which co-express NKB, regulate the activity of gonadotropin releasing hormone (GnRH) neurons, and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by inflammation in the synovial tissue, driven by aberrant activation of both the innate and adaptive immune systems, which can lead to irreversible disability. Despite the increasing therapeutic approaches for RA, only a low percentage of patients achieve sustained disease remission, and the persistence of immune dysregulation is likely responsible for disease recurrence once remission is attained. Cell therapy is an attractive, wide-spectrum strategy to modulate inflammation, and mesenchymal stromal cells (MSC) derived from perinatal tissues provide valuable tools for their use in regenerative medicine, mainly due to their immunomodulatory properties.

View Article and Find Full Text PDF

Morphology and functionality in biomimetic cultured meat produced from various cellular origins.

Biomater Adv

January 2025

Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.

Alternative meat production technologies offer the potential to alleviate many of the ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. The process of cultured meat production relies on cell sources harvested from livestock such as bovine, swine, and chicken.

View Article and Find Full Text PDF

Engineering organoids as cerebral disease models.

Curr Opin Biotechnol

January 2025

Institute of Synthetic Biology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany. Electronic address:

Cerebral organoids pioneered in replicating complex brain tissue architectures in vitro, offering a vast potential for human disease modeling. They enable the in vitro study of human physiological and pathophysiological mechanisms of various neurological diseases and disorders. The trajectory of technological advancements in brain organoid generation and engineering over the past decade indicates that the technology might, in the future, mature into indispensable solutions at the horizon of personalized and regenerative medicine.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!