We developed a new generic fluorescence sensing technology based on the change of relative intensities between two well-separated emission bands of the novel functional 3-hydroxychromone (3HC) dyes. A greatly enhanced self-calibrating wavelength-ratiometric response is obtained to all major types of non-covalent interactions that can be used in sensing--to polarity, hydrogen bonding ability and to local electrostatic fields. This technology may find a broad range of applications--from homogeneous assays in solutions to microarrays, microfluidic devices, nanosensors and whole cell imaging systems. It allows transforming micelles or phospholipid vesicles into nanosensor devices. In cellular research a high sensitivity to membrane potentials can be obtained and the membrane changes during apoptosis detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2006.03.091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!