Effects of adenosine A(3) receptor agonist on bone marrow granulocytic system in 5-fluorouracil-treated mice.

Eur J Pharmacol

Laboratory of Experimental Hematology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.

Published: May 2006

The purpose of the experiments reported was to investigate effects of N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), a selective adenosine A(3) receptor agonist, on the granulocytic system in femoral marrow of mice depleted by the cytotoxic drug 5-fluorouracil. In the phase of the highest cell depletion IB-MECA was injected i.p. at single doses of 200 nmol/kg given either once or twice daily in 2- and 4-day regimens starting on day 1 after 5-fluorouracil administration; the effects were evaluated on days 3 and 5, respectively. The general effect of IB-MECA in all these experiments was an enhancement of the counts of morphologically recognizable proliferative granulocytic cells, interpreted as evidence of the differentiation of committed progenitor cells. A more expressive effect was observed after IB-MECA injected twice daily. It was found that the induction of the strong differentiation pressures by IB-MECA given twice daily shortly after 5-fluorouracil treatment can be counterproductive due to the preponderance of differentiaton processes over the proliferation control. In additional experiments, it has been shown that the use of the 2-day administration of IB-MECA given twice daily in the recovery phase, i.e., on days 5 and 6 after 5-fluorouracil administration, does not induce stimulatory effects. Thus, the dosing and timing of IB-MECA treatment determines its effectivity in stimulating granulopoiesis under conditions of myelosuppression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2006.03.042DOI Listing

Publication Analysis

Top Keywords

adenosine receptor
8
receptor agonist
8
granulocytic system
8
ib-meca injected
8
5-fluorouracil administration
8
ib-meca daily
8
ib-meca
7
effects
4
effects adenosine
4
agonist bone
4

Similar Publications

Mangiferin and EGCG Compounds Fight Against Hyperlipidemia by Promoting FFA Oxidation via AMPK/PPAR.

PPAR Res

December 2024

Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, Yunnan, China.

Hyperlipidemia is a critical risk factor for obesity, diabetes, cardiovascular diseases, and other chronic diseases. Our study was to determine the effects and mechanism of mangiferin (MF) and epigallocatechin gallate (EGCG) compounds on improving hyperlipidemia in HepG2 cells. HepG2 cells were treated with 0.

View Article and Find Full Text PDF

The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).

View Article and Find Full Text PDF

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!