Optimization and evaluation of surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry for protein profiling of cerebrospinal fluid.

Proteome Sci

Novartis, BioMarker Development, Exploratory Development, Klybeckstasse, CH-4002 Basel, Switzerland.

Published: April 2006

Cerebrospinal fluid (CSF) potentially carries an archive of peptides and small proteins relevant to pathological processes in the central nervous system (CNS) and surrounding brain tissue. Proteomics is especially well suited for the discovery of biomarkers of diagnostic potential in CSF for early diagnosis and discrimination of several neurodegenerative diseases. ProteinChip surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) is one such approach which offers a unique platform for high throughput profiling of peptides and small proteins in CSF. In this study, we evaluated methodologies for the retention of CSF proteins < 20 kDa in size, and identify a strategy for screening small proteins and peptides in CSF. ProteinChip array types, along with sample and binding buffer conditions, and matrices were investigated. By coupling the processing of arrays to a liquid handler reproducible and reliable profiles, with mean peak coefficients of variation < 20%, were achieved for intra- and inter-assays under selected conditions. Based on peak m/z we found a high degree of overlap between the tested array surfaces. The combination of CM10 and IMAC30 arrays was sufficient to represent between 80-90% of all assigned peaks when using either sinapinic acid or alpha-Cyano-4-hydroxycinnamic acid as the energy absorbing matrices. Moreover, arrays processed with SPA consistently showed better peak resolution and higher peak number across all surfaces within the measured mass range. We intend to use CM10 and IMAC30 arrays prepared in sinapinic acid as a fast and cost-effective approach to drive decisions on sample selection prior to more in-depth discovery of diagnostic biomarkers in CSF using alternative but complementary proteomic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464122PMC
http://dx.doi.org/10.1186/1477-5956-4-7DOI Listing

Publication Analysis

Top Keywords

small proteins
12
surface-enhanced laser-desorption/ionization
8
laser-desorption/ionization time-of-flight
8
time-of-flight mass
8
mass spectrometry
8
cerebrospinal fluid
8
peptides small
8
cm10 imac30
8
imac30 arrays
8
sinapinic acid
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ECU, Perth, Western Australia, Australia.

Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Athira Pharma, Inc., Bothell, WA, USA.

Background: We have previously reported the neuroprotective effects of fosgonimeton in amyloid-β (Aβ)-driven preclinical models of Alzheimer's disease (AD). Fosgonimeton is an investigational small-molecule positive modulator of the neurotrophic hepatocyte growth factor (HGF) system, currently under investigation for mild-to-moderate AD (LIFT-AD; NCT04488419). Given the recent approvals of Aβ-targeting monoclonal antibodies (Aβ-mAbs) for the treatment of AD, and growing recognition that combination therapies may improve treatment outcomes, we sought to investigate the preclinical activity of fosgonimeton in the presence of Aβ-mAbs.

View Article and Find Full Text PDF

Background: Small, soluble oligomers, rather than mature fibrils, are the major neurotoxic agents in Alzheimer's disease (AD). In the last few years, Aprile and co-workers designed and purified a single-domain antibody (sdAb), called DesAb-O, with high specificity for Aβ oligomeric conformers. Recently, Cascella and co-workers showed that DesAb-O can selectively detect synthetic Aβ oligomers both in vitro and in cultured cells, neutralizing their associated neuronal dysfunction.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Athira Pharma, Inc., Bothell, WA, USA.

Background: Accumulating evidence highlights impairment of autophagy as a key pathological feature of neurodegenerative diseases including Alzheimer's disease (AD). Autophagy is a highly dynamic, lysosome-based degradation process that promotes the clearance of degenerative factors to maintain cellular functions, preserve metabolic integrity, and ensure survival. Impaired autophagic function leads to the abnormal accumulation of autophagic vesicles (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!