High variability in the strength of species interactions is usually considered a source of unstable or unpredictable community patterns. However, recent theoretical work suggests that some types of variance in interaction strength may actually promote stability. Here we provide the first empirical evidence that highly variable, context-dependent species interaction strengths and resilient community patterns can be two sides of the same coin. Field experiments show that a persistent rocky intertidal seascape is remarkably resilient to multiple sources of environmental stochasticity largely because of scale dependent and variable species interaction strengths. Biological interactions exert a stabilizing effect because their intensity varies systematically with changes in both physical sources of mortality of established species, as well as recruitment of new individuals. Strong variation in species interaction strengths with disturbance size and environmental conditions is ubiquitous in nature. Elucidating when this context dependency will be stabilizing is critical to predict community-level responses to anthropogenic disturbances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1461-0248.2006.00899.x | DOI Listing |
Transl Psychiatry
January 2025
Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China. Electronic address:
This study investigated the effects of Chlamydomonas reinhardtii polysaccharides (CRPs) on retarding the retrogradation of japonica rice starch (JS) and glutinous rice starch (GS). Structure characterization revealed that CRPs, with an average molecular weight of 505 kDa, mainly consisted of glucose, mannose, and galactose and featured a triple-helix structure. CRPs could reduce the storage modulus increment of JS during the cooling process by interacting with amylose, thereby inhibiting gel network formation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biotechnological Genetics, Institute of Science, Trakya University, Edirne, Turkey.
Fish gelatin, a sustainable substitute for mammalian gelatin, frequently exhibits weaker gel strength and thermal stability, limiting its industrial uses. This study investigated an in vivo method to improve functional characteristics by supplementing Nile tilapia diets with Aronia extract. The control diet (A0) contained no Aronia extract, while the remaining four diets consisted of commercial pelleted feed enriched with 250 mg/kg (A250), 500 mg/kg (A500), 750 mg/kg (A750), and 1000 mg/kg (A1000) of Aronia extract.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
To enhance the surface hydrophobicity and emulsification capacity of silica colloidal particles, a natural surface modification of soy hull polysaccharides (SHP) was conducted. Here, the effects of pH and ionic strength on the stability, microstructure and rheological properties of concentrated Pickering emulsions were investigated. Experimental results show emulsions gelled at pH 2, with increasing pH (2-10), SiO-SHP absolute zeta potential (from -19.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!