Vitamin K2 is widely used for the treatment of osteoporosis in Japan. To understand the effects of vitamin K2 on bone mass and bone metabolism, we reviewed its effects on the development of osteopenia in rats, which characterizes models of osteoporosis. Vitamin K2 was found to attenuate the increase in bone resorption and/or maintain bone formation, reduce bone loss, protect against the loss of trabecular bone mass and its connectivity, and prevent the decrease in strength of the long bone in ovariectomized rats. However, combined treatment of bisphosphonates and vitamin K2 had an additive effect in preventing the deterioration of the trabecular bone architecture in ovariectomized rats, while the combined treatment of raloxifene and vitamin K2 improved the bone strength of the femoral neck. The use of vitamin K2 alone suppressed the increase in trabecular bone turnover and endocortical bone resorption, which attenuated the development of cancellous and cortical osteopenia in orchidectomized rats. In addition, vitamin K2 inhibited the decrease in bone formation in prednisolone-treated rats, thereby preventing cancellous and cortical osteopenia. In sciatic neurectomized rats, vitamin K2 suppressed endocortical bone resorption and stimulated bone formation, delaying the reduction of the trabecular thickness and retarding the development of cortical osteopenia. Vitamin K2 also prevented the acceleration of bone resorption and the reduction in bone formation in tail-suspended rats, which counteracted cancellous bone loss. Concomitant use of vitamin K2 with a bisphosphonate ameliorated the suppression of bone formation and more effectively prevented cancellous bone loss in tail-suspended rats. Vitamin K2 stimulated renal calcium reabsorption, retarded the increase in serum parathyroid hormone levels, and attenuated cortical bone loss primarily by suppressing bone resorption in calcium-deficient rats while maintaining the strength of the long bone in rats with magnesium deficiency. These findings suggest that vitamin K2 may not only stimulate bone formation, but may also suppress bone resorption. Thus, vitamin K2 could regulate bone metabolism in rats, which represented the various models of osteoporosis. However, the effects of vitamin K2 on bone mass and bone metabolism seem to be modest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687623 | PMC |
http://dx.doi.org/10.3349/ymj.2006.47.2.157 | DOI Listing |
Clin Orthop Relat Res
January 2025
Professor, Orthopaedics Department, University of Utah, Salt Lake City, UT, USA.
Genet Test Mol Biomarkers
January 2025
Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.
Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.
View Article and Find Full Text PDFSickle cell disease (SCD) is the most common genetic disease in the world and a societal challenge. SCD is characterized by multi-organ injury related to intravascular hemolysis. To understand tissue-specific responses to intravascular hemolysis and exposure to heme, we present a transcriptomic atlas in the primary target organs of HbSS vs HbAA transgenic SCD mice.
View Article and Find Full Text PDFAlthough iron deficiency anemia is common, interpreting iron laboratory test results can be challenging in patients with comorbidities. We aimed to study the accuracy of common iron biomarkers compared with bone marrow iron staining in a large retrospective dataset of hematological patients. We collected from 6610 patients (median age 66 years) results of iron staining, with their concurrent ferritin, transferrin saturation, soluble transferrin receptor, transferrin, hemoglobin, and mean red blood cell volume results from Helsinki University Hospital electronic health records.
View Article and Find Full Text PDFJ Cardiovasc Med (Hagerstown)
February 2025
Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste.
Diagnosing cardiac amyloidosis (CA) is challenging because of its phenotypic heterogeneity, multiorgan involvement requiring interaction among experts in different specialties and subspecialties, lack of a single noninvasive diagnostic tool, and still limited awareness in the medical community. Missing or delaying the diagnosis of CA may profoundly impact on patients' outcomes, as potentially life-saving treatments may be omitted or delayed. The suspicion of CA should arise when "red flags" for this condition are present, together with increased left ventricular wall thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!