The differential theory of diffraction by arbitrary cross-section cylindrical objects is developed for the most general case of an incident field with a wave vector outside the cross-section plane of the object. The fast Fourier factorization technique recently developed for studying gratings is generalized to anisotropic and/or inhomogeneous media described in cylindrical coordinates; thus the Maxwell equations are reduced to a first-order differential set well suited for numerical computation. The resolution of the boundary-value problem, including an adapted S-matrix propagation algorithm, is explained in detail for the case of an isotropic medium. Numerical applications show the capabilities of the method for resolving complex diffraction problems. The method and its numerical implementation are validated through comparisons with the well-established multipole method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/josaa.23.001146DOI Listing

Publication Analysis

Top Keywords

fast fourier
8
fourier factorization
8
diffraction theory
4
theory application
4
application fast
4
factorization cylindrical
4
cylindrical devices
4
devices arbitrary
4
arbitrary cross
4
cross lighted
4

Similar Publications

PbZrTiO cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples.

View Article and Find Full Text PDF

Insights into the formation of pullulan nanofilm and its feasibility as probiotic-resided oral fast dissolving carrier.

Int J Biol Macromol

January 2025

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China. Electronic address:

Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology.

View Article and Find Full Text PDF

We introduce and characterize a fast (50 kHz), long range (50 ps) and random-access optical delay line based on an acousto-optic deflector inserted in the Fourier plane of a zero-dispersion line. The advantages of this agile delay line are demonstrated in the context of impulsive stimulated Raman imaging in the low-frequency range (<200 cm). Besides fast imaging with a spectral resolution of 1.

View Article and Find Full Text PDF

Linear digital filters are at the core of image reconstruction and processing for many coherent optical imaging techniques, such as digital holography (DH) or optical coherence tomography (OCT). They can also be efficiently implemented using fast Fourier transform (FFT) with appropriate transfer/filter functions that operate in the frequency domain. However, even with optimal filter design, they suffer from side effects such as sidelobe generation or resolution limitations, e.

View Article and Find Full Text PDF

Fourier ptychographic microscopy (FPM) enables high-resolution, wide-field imaging of both amplitude and phase, presenting significant potential for applications in digital pathology and cell biology. However, artifacts commonly observed at the boundaries of reconstructed images can significantly degrade imaging quality and phase retrieval accuracy. These boundary artifacts are typically attributed to the use of the fast Fourier transform (FFT) on non-periodic images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!