Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors.

Neuropsychopharmacology

Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Published: January 2007

Clinical studies suggest that adjunct galantamine may improve negative and cognitive symptoms in schizophrenia. These symptoms may be related to impaired dopaminergic function in the prefrontal cortex. Indeed, galantamine has been shown to increase dopamine release in vitro. Galantamine is an allosteric modulator of nicotinic acetylcholine receptors (nAChRs) and, at higher doses, an acetylcholine esterase (AChE) inhibitor. We have previously shown that nicotine, through stimulation of nAChRs in the ventral tegmental area (VTA), activates midbrain dopamine neurons and, hence, potentiation of these receptors could be an additional mechanism by which galantamine can activate dopaminergic pathways. Therefore, the effects of galantamine (0.01-1.0 mg/kg s.c.) on dopamine cell firing were tested in anaesthetized rats. Already at a low dose, unlikely to result in significant AchE inhibition, galantamine increased firing activity of dopaminergic cells in the VTA. The effect of galantamine was prevented by the nAChR antagonist mecamylamine (1.0 mg/kg s.c.), but not the muscarinic receptor antagonist scopolamine (0.1 mg/kg s.c.), and it was not mimicked by the selective AChE inhibitor donepezil (1.0 mg/kg s.c.). Our data thus indicate that galantamine increases dopaminergic activity through allosteric potentiation of nAChRs. Galantamine's effect was also prevented by the alpha7 nAChR antagonist methyllycaconitine (6.0 mg/kg i.p.) as well as the N-methyl-D-aspartate antagonist CGP39551 (2.5 mg/kg s.c.), indicating a mechanism involving presynaptic facilitation of glutamate release. In parallel microdialysis experiments, galantamine was found to increase extracellular levels of dopamine in the medial prefrontal cortex. These results may have bearing on the enhancement of negative and cognitive symptoms in schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1301087DOI Listing

Publication Analysis

Top Keywords

galantamine
10
allosteric potentiation
8
nicotinic acetylcholine
8
acetylcholine receptors
8
negative cognitive
8
cognitive symptoms
8
symptoms schizophrenia
8
prefrontal cortex
8
galantamine increase
8
ache inhibitor
8

Similar Publications

Alzheimer's disease (AD) is a complex/multifactorial brain disorder involving hundreds of defective genes, epigenetic aberrations, cerebrovascular alterations, and environmental risk factors. The onset of the neurodegenerative process is triggered decades before the first symptoms appear, probably due to a combination of genomic and epigenetic phenomena. Therefore, the primary objective of any effective treatment is to intercept the disease process in its presymptomatic phases.

View Article and Find Full Text PDF

Galantamine-Memantine Combination in the Treatment of Parkinson's Disease Dementia.

Brain Sci

November 2024

Department of Public Safety and Correctional Services, Baltimore, MD 21215, USA.

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of galantamine analogues for cognitive improvement in Alzheimer's disease.

Eur J Med Chem

December 2024

Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China. Electronic address:

Galantamine plays a crucial role in the management of brain disorders. In this study, a series of galantamine analogues were designed, synthesized and evaluated as potential therapeutic agents for Alzheimer's disease (AD). Compound C2, a dual inhibitor of cholinesterase, was obtained by introducing a benzylpyridine ring to the hydroxyl group of galantamine.

View Article and Find Full Text PDF

The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!