Recent research has suggested that cortical long-term potentiation can be induced non-invasively in humans by using rapid visual stimulation. The present study extends these findings by investigating the specificity of this long-term potentiation effect to the inducing stimulus. One group of study participants were tetanized using a one cycle-per-degree sine grating, while a second group was tetanized using a five cycles-per-degree sine grating. Using electroencephalography, we found that an increase in the N1b potential was specific to sine gratings of the same frequency as the tetanus. No effect was observed in the N1b for sine gratings of a different spatial frequency. These results suggest that the long-term potentiation effect induced by the sensory tetanus is isolated to a discrete neural population in the visual cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.wnr.0000215775.53732.9fDOI Listing

Publication Analysis

Top Keywords

long-term potentiation
12
potentiation induced
8
sine grating
8
sine gratings
8
spatial frequency-specific
4
potentiation
4
frequency-specific potentiation
4
potentiation human
4
human visual-evoked
4
visual-evoked potentials
4

Similar Publications

Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature.

View Article and Find Full Text PDF

Chronic stress increases the incidence of psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Repeated Social Defeat (RSD) in mice recapitulates several key physiological, immune, and behavioral changes evident after chronic stress in humans. For instance, neurons in the prefrontal cortex, amygdala, and hippocampus are involved in the interpretation of and response to fear and threatful stimuli after RSD.

View Article and Find Full Text PDF

As requested by the editors of this special issue of Hippocampus on Scientific Histories of Hippocampal Research, this review provides a detailed personal perspective and historical background on the research involved in a number of findings. The review includes description of the development of the water maze and its use in providing evidence to support the role of the hippocampus in spatial memory function. The review also describes how the water maze was then used in further work to support the proposal that NMDA-dependent synaptic modification in the hippocampus mediates the encoding of new spatial memories.

View Article and Find Full Text PDF

Background: Escitalopram, a pharmacological compound, and crocin, the active compound of saffron, influence brain functions and serotonin levels. This study examined the efficacy of escitalopram with and without crocin in restoring the input-output (I/O) functions and long-term potentiation (LTP) within the hippocampal cornu ammonis 1 (CA1) region of stressed rats.

Materials And Methods: Rats were divided into six groups: control (Co), sham (Sh), stress-recovery (St-Rec), stress-escitalopram (St-Esc), stress-crocin (St-Cr), and stress-escitalopram-crocin (St-Esc-Cr) groups.

View Article and Find Full Text PDF

Discovery of MDI-114215: A Potent and Selective LIMK Inhibitor To Treat Fragile X Syndrome.

J Med Chem

December 2024

Medicines Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.

LIMKs are serine/threonine and tyrosine kinases responsible for controlling cytoskeletal dynamics as key regulators of actin stability, ensuring synaptic health through normal synaptic bouton structure and function. However, LIMK1 overactivation results in abnormal dendritic synaptic development that characterizes the pathogenesis of Fragile X Syndrome (FXS). As a result, the development of LIMK inhibitors represents an emerging disease-modifying therapeutic approach for FXS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!