The apical ganglion (AG) of larval caenogastropods, such as Ilyanassa obsoleta, houses a sensory organ, contains five serotonergic neurons, innervates the muscular and ciliary components of the velum, and sends neurites into a neuropil that lies atop the cerebral commissure. During metamorphosis, the AG is lost. This loss had been postulated to occur through some form of programmed cell death (PCD), but it is possible for cells within the AG to be respecified or to migrate into adjacent ganglia. Evidence from histological sections is supported by results from a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which indicate that cells of the AG degenerate by PCD. PCD occurs after metamorphic induction by serotonin or by inhibition of nitric oxide synthase (NOS) activity. Cellular degeneration and nuclear condensation and loss were observed within 12 h of metamorphic induction by NOS inhibition and occur before loss of the velar lobes, the ciliated tissue used for larval swimming and feeding. Velar disintegration happens more rapidly after metamorphic induction by serotonin than by 7-nitroindazole, a NOS inhibitor. Loss of the AG was complete by 72 h after induction. Spontaneous loss of the AG in older competent larvae may arise from a natural decrease in endogenous NOS activity, giving rise to the tendency of aging larvae to display spontaneous metamorphosis in culture.

Download full-text PDF

Source
http://dx.doi.org/10.2307/4134600DOI Listing

Publication Analysis

Top Keywords

metamorphic induction
12
programmed cell
8
cell death
8
apical ganglion
8
ganglion larval
8
ilyanassa obsoleta
8
induction serotonin
8
loss
5
death apical
4
larval metamorphosis
4

Similar Publications

Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies.

Microb Ecol

December 2024

Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India.

Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides.

View Article and Find Full Text PDF

E93 gene in the swimming crab, Portunus trituberculatus: Responsiveness to 20-hydroxyecdysone and methyl farnesoate and role on regulating ecdysteroid synthesis.

Comp Biochem Physiol B Biochem Mol Biol

January 2024

Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China. Electronic address:

Ecdysone-induced protein 93 (E93) is a metamorphic determinant involved in crosstalk between 20-hydroxyecdysone (20E) and juvenile hormone (JH) during the insect molting process. The present study identified the E93 gene from the swimming crab, P. trituberculatus, and found it was widely distributed in adult tissues.

View Article and Find Full Text PDF

Hydroxyapatite (HAP) occurs naturally in sedimentary and metamorphic rocks and constitutes the hard structures in many organisms. Since synthetic nano-sized HAP (HAP-NPs) are used in orthopedic applications and for heavy metal remediation in aquatic and terrestrial media, both environment and humans are exposed to them. Due to the concerns about their potential hazards, the genotoxic effects that round/rod forms of HAP-NPs were investigated in Drosophila using the wing-spot and the comet assays.

View Article and Find Full Text PDF

Metamorphosis entails hormonally regulated morphological and physiological changes requiring high energy levels. Probiotics as feed supplements generate ameliorative effects on host nutrient digestion and absorption. Thereby, the aim of the present research was to investigate the impact of the probiotic as a water additive on cellular signaling pathways in the metamorphosis of greater amberjack ().

View Article and Find Full Text PDF

XG Chinese kale ( cv. '') is a variety of Chinese kale and has metamorphic leaves attached to the true leaves. Metamorphic leaves are secondary leaves emerging from the veins of true leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!