Stress-inducible HSP27 protects cells from death through various mechanisms. We have recently demonstrated that HSP27 can also enhance the degradation of some proteins through the proteasomal pathway. Here, we show that one of these proteins is the cyclin-dependent kinase (Cdk) inhibitor p27Kip1. The ubiquitination and degradation of this protein that favors progression through the cell cycle was previously shown to involve either a Skp2-dependent mechanism,i.e., at the S-/G2-transition, or a KPC (Kip1 ubiquitination-promoting complex)-dependent mechanism, i.e.,at the G0/G1 transition. In this work, we demonstrate that, in response to serum depletion, p27Kip1 cellular content first increases then progressively decreases as cells begin to die. In this stressful condition, HSP27favors p27Kip1 ubiquitination and degradation by the proteasome. A similar observation was made in response to stress induced by the NO donor glyceryl trinitrate (GTN). HSP27-mediated ubiquitination ofp27Kip1 does not require its phosphorylation on Thr187 or Ser-10, nor does it depend on the SCFSkp2 ubiquitin ligase E3 complex. It facilitates the G1/S transition,which suggests that, in stressful conditions, HSP27might render quiescent cells competent to re-enter the cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.05-4184fjeDOI Listing

Publication Analysis

Top Keywords

p27kip1 ubiquitination
8
ubiquitination degradation
8
cell cycle
8
hsp27 favors
4
ubiquitination
4
favors ubiquitination
4
ubiquitination proteasomal
4
degradation
4
proteasomal degradation
4
p27kip1
4

Similar Publications

Ubiquitin like with PHD and ring finger domains 2 (UHRF2) regulates the cell cycle and epigenetics as a multi-domain protein sharing homology with UHRF1. UHRF1 functions with DNMT1 to coordinate daughter strand methylation during DNA replication, but UHRF2 can't perform this function, and its roles during cell cycle progression are not well defined. UHRF2 role as an oncogene vs.

View Article and Find Full Text PDF

Targeting RCC1 to block the human soft-tissue sarcoma by disrupting nucleo-cytoplasmic trafficking of Skp2.

Cell Death Dis

April 2024

College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.

Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS.

View Article and Find Full Text PDF

While loss of function (LOF) of retinoblastoma 1 (RB1) tumor suppressor is known to drive initiation of small-cell lung cancer and retinoblastoma, RB1 mutation is rarely observed in breast cancers at their initiation. In this study, we investigated the impact on untransformed mammary epithelial cells given by RB1 LOF. Depletion of RB1 in anon-tumorigenic MCF10A cells induced reversible growth arrest (quiescence) featured by downregulation of multiple cyclins and MYC, upregulation of p27, and lack of expression of markers which indicate cellular senescence or epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is the most lethal of the urologic malignancies. We previously discovered that DAB2IP, a novel Ras GTPase-activating protein, was frequently epigenetically silenced in RCC, and DAB2IP loss was correlated with the overall survival of RCC patients. In this study, we determined the biological functions of DAB2IP in clear cell RCC (ccRCC) and its potential mechanisms of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!