Iron-related transcriptomic variations in CaCo-2 cells, an in vitro model of intestinal absorptive cells.

Physiol Genomics

Centre National de la Recherche Scientifique UMR 6061 Génétique et Développement, Université de Rennes 1, Groupe Oncogénomique, IFR140 GFAS, Faculté de médecine, Rennes, France.

Published: June 2006

Regulation of iron absorption by duodenal enterocytes is essential for the maintenance of homeostasis by preventing iron deficiency or overload. Despite the identification of a number of genes implicated in iron absorption and its regulation, it is likely that further factors remain to be identified. For that purpose, we used a global transcriptomic approach, using the CaCo-2 cell line as an in vitro model of intestinal absorptive cells. Pangenomic screening for variations in gene expression correlating with intracellular iron content allowed us to identify 171 genes. One hundred nine of these genes are clustered into five types of expression profile. This is the first time that most of these genes have been associated with iron metabolism. Functional annotation of these five clusters indicates potential links between the immune response, proteolysis processes, and iron depletion. In contrast, iron overload is associated with cellular metabolism, especially that of lipids and glutathione involving redox function and electron transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00297.2005DOI Listing

Publication Analysis

Top Keywords

vitro model
8
model intestinal
8
intestinal absorptive
8
absorptive cells
8
iron absorption
8
iron
7
iron-related transcriptomic
4
transcriptomic variations
4
variations caco-2
4
caco-2 cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!