Neural and endocrine factors (i.e., Ach and GLP-1) restore defective glucose-stimulated insulin release in pancreatic islets lacking sulfonylurea type 1 receptors (SUR1(-/-)) (Doliba NM, Qin W, Vatamaniuk MZ, Li C, Zelent D, Najafi H, Buettger CW, Collins HW, Carr RD, Magnuson MA, and Matschinsky FM. Am J Physiol Endocrinol Metab 286: E834-E843, 2004). The goal of the present study was to assess fuel-induced respiration in SUR1(-/-) islets and to correlate it with changes in intracellular Ca(2+), insulin, and glucagon secretion. By use of a method based on O(2) quenching of phosphorescence, the O(2) consumption rate (OCR) of isolated islets was measured online in a perifusion system. Basal insulin release (IR) was 7-10 times higher in SUR1(-/-) compared with control (CON) islets, but the OCR was comparable. The effect of high glucose (16.7 mM) on IR and OCR was markedly reduced in SUR1(-/-) islets compared with CON. Ach (0.5 microM) in the presence of 16.7 mM glucose caused a large burst of IR in CON and SUR1(-/-) islets with minor changes in OCR in both groups of islets. In SUR1(-/-) islets, high glucose failed to inhibit glucagon secretion during stimulation with amino acids or Ach. We conclude that 1) reduced glucose responsiveness of SUR1(-/-) islets may be in part due to impaired energetics, as evidenced by significant decrease in glucose-stimulated OCR; 2) elevated intracellular Ca(2+) levels may contribute to altered insulin and glucagon secretion in SUR1(-/-) islets; and 3) The amplitudes of the changes in OCR during glucose and Ach stimulation do not correlate with IR in normal and SUR1(-/-) islets suggesting that the energy requirements for exocytosis are minor compared with other ATP-consuming reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00579.2005DOI Listing

Publication Analysis

Top Keywords

sur1-/- islets
28
islets
12
glucagon secretion
12
sur1-/-
10
respiration sur1-/-
8
insulin release
8
intracellular ca2+
8
insulin glucagon
8
high glucose
8
changes ocr
8

Similar Publications

Loss-of-function (LOF) mutations in KATP channels cause hyperexcitability and insulin hypersecretion, resulting in congenital hyperinsulinism (CHI). Paradoxically, despite the initial insulin hypersecretion, many CHI cases, as well as KATP knockout (KO) animals, eventually 'crossover' to undersecretion and even diabetes. Here we confirm that Sur1 KO islets exhibit higher intracellular [Ca2+] ([Ca2+]i) at all [glucose], but show decreased glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

Characterization of the zebrafish as a model of ATP-sensitive potassium channel hyperinsulinism.

BMJ Open Diabetes Res Care

April 2024

Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

Introduction: Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (K) are limited to primary islets from patients and the mouse model. Zebrafish exhibit potential as a novel KHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations.

View Article and Find Full Text PDF

Manifest diabetes, but also conditions of increased insulin resistance such as pregnancy or obesity can lead to islet architecture remodeling. The contributing mechanisms are as poorly understood as the consequences of altered cell arrangement. For the quantification of the different cell types but also the frequency of different cell-cell contacts within the islets, different approaches exist.

View Article and Find Full Text PDF

Fine-tuned photochromic sulfonylureas for optical control of beta cell Ca fluxes.

Diabet Med

December 2023

Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.

We previously developed, synthesized and tested light-activated sulfonylureas for optical control of K channels and pancreatic beta cell activity in vitro and in vivo. Such technology relies on installation of azobenzene photoswitches onto the sulfonylurea backbone, affording light-dependent isomerization, alteration in ligand affinity for SUR1 and hence K channel conductance. Inspired by molecular dynamics simulations and to further improve photoswitching characteristics, we set out to develop a novel push-pull closed ring azobenzene unit, before installing this on the sulfonylurea glimepiride as a small molecule recipient.

View Article and Find Full Text PDF

Unlabelled: Congenital hyperinsulinism (HI) is a genetic disorder in which pancreatic β-cell insulin secretion is excessive and results in hypoglycemia that, without treatment, can cause brain damage or death. Most patients with loss-of-function mutations in ABCC8 and KCNJ11, the genes encoding the β-cell ATP-sensitive potassium channel (KATP), are unresponsive to diazoxide, the only U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!