1. Behavioural diversification is thought to be an important initial step in the origin of resource polymorphisms. We developed a model for young brook charr (Salvelinus fontinalis Mitchill) to examine four mechanisms that could generate a U-shaped relationship between growth rate (fitness) and the proportion of time spent moving that would favour alternative foraging tactics in the absence of obvious differences in body size and shape. 2. Recently emerged brook charr of similar size and shape inhabit still-water pools along the sides of streams. Some individuals tend to sit and wait for crustacean prey at the pool substrate near the bank, while others tend to search actively for insect prey at the pool surface away from the bank. 3. The ecological mechanisms modelled were (i) the relationship between the rate of prey capture and the proportion of time spent moving is curvilinear, such that net rate of energy gain is maximized at two different levels of activity; (ii) switching between foraging locations and, hence, tactics involves lost opportunity and travel costs; (iii) switching between prey types and, hence, tactics involves a learning cost; and (iv) foraging success is status-dependent with individuals switching between tactics having a lower status than those specializing at a tactic. 4. Singly, no mechanism predicted the U-shaped relationship between growth rate and the proportion of time spent moving. Together, a U-shaped relationship was obtained, indicating that the behavioural diversification and diversifying selection observed in the field may be a consequence of multiple, subtle mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2656.2006.01071.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!