Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Supramolecular three-dimensional self-assembly of nonlamellar lipids with fragments of the protein immunoglobulin results in a bicontinuous cubic phase fragmented into nanoparticles with open water channels (cubosomes). The structure of the diamond-type cubic nanoparticles is characterized experimentally by freeze-fracture electron microscopy, and it is mathematically modeled with nodal surfaces emphasizing the fluid-like undulations of the cubosomic interfaces. Based on scaling-up and scaling-down approaches, we present stable and intermediate-kind nanoparticles resulting from the cubosomic growth. Our results reveal the smallest stable diamond-type cubosomic entity that can serve as a building block of more complex nanostructured fluid drug delivery vehicles of therapeutic proteins. The evidence presented for lipid-bilayer undulations in the surface region of the protein/lipid cubosomes could have important consequences for possible applications of these hierarchically organized porous nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja060082c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!