Identification of PVY-N on potato and tobacco in Tehran and Mazandaran provinces.

Commun Agric Appl Biol Sci

Dept. of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran.

Published: May 2006

During two growing seasons in years of 2003 and 2004 potato and tobacco of virus infected plants were collected from fields in Tehran (Damavand) and Mazandaran (Behshahr) provinces. Serological methods of TAS-ELISA and DIBA were performed by using PVY antiserum (DSMZ - Plant Virus Collection; Germany) but only PVY was detected. The strain of samples was determined by using MAb of potato virus Y (AS-0403/1; DSMZ; Germany). The molecular weight of the virus coat protein was approximately 34 kDa in SDS-PAGE and Western blotting. Total RNA was extracted for RT-PCR. Immunocapture RT-PCR and RT-PCR products were 974 bp by using specific primers of PVY. IC-RT-PCR has given the best results.

Download full-text PDF

Source

Publication Analysis

Top Keywords

potato tobacco
8
identification pvy-n
4
pvy-n potato
4
tobacco tehran
4
tehran mazandaran
4
mazandaran provinces
4
provinces growing
4
growing seasons
4
seasons years
4
years 2003
4

Similar Publications

Ashwagandha (Withania somnifera), enriched in alkaloids, steroidal lactones and saponins, is a valuable herb in Indian Ayurvedic medicine. During December 2023, Va-1 (Vallabh Ashwagandha-1) plants at ICAR -Central Tobacco Research Institute, Vedasandur, Tamil Nadu (10.53717ºN, 77.

View Article and Find Full Text PDF

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

Protease activity of NIa-Pro determines systemic pathogenicity of clover yellow vein virus.

Virology

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China. Electronic address:

Clover yellow vein virus (ClYVV), a potyvirus that infects various dicotyledonous plants, poses a significant threat to the cultivation of legumes. Although potyviral NIa-Pro was extensively studied in viral infection cycle and host antiviral responses, the contribution of NIa-Pro protease activity to virus systemic symptoms has not yet been reported. In this study, we developed infectious clones of a ClYVV isolated from Pisum sativum.

View Article and Find Full Text PDF

Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.

View Article and Find Full Text PDF

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!