Previous studies have shown that nanomolar acetylcholine (ACh) produces a 2 to 4-mV hyperpolarization of skeletal muscle fibers putatively due to Na(+),K(+)-ATPase activation. The present study elucidates the involvement of the nicotinic ACh receptor (nAChR) and of Na(+),K(+)-ATPase isoform(s) in ACh-induced hyperpolarization of rat diaphragm muscle fibers. A variety of ligands of specific binding sites of nAChR and Na(+),K(+)-ATPase were used. Dose-response curves for ouabain, a specific Na(+),K(+)-ATPase inhibitor, were obtained to ascertain which Na(+),K(+)-ATPase isoform(s) is involved. The ACh dose-response relationship for the hyperpolarization was also determined. The functional relationship between these two proteins was also studied in a less complex system, a membrane preparation from Torpedo electric organ. The possibility of a direct ACh effect on Na(+),K(+)-ATPase was studied in purified lamb kidney Na(+),K(+)-ATPase and in rat red blood cells, systems where no nAChR is present. The results indicate that binding of nAChR agonists to their specific sites results in modulation of ouabain-sensitive (most probably alpha2) isoform of Na(+),K(+)-ATPase, leading to muscle membrane hyperpolarization. In the Torpedo preparation, ouabain modulates dansyl-C6-choline binding to nAChR, and vice versa. These results provide the first evidence of a functional interaction between nAChR and Na(+),K(+)-ATPase. Possible interaction mechanisms are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-006-0081-6DOI Listing

Publication Analysis

Top Keywords

nachr na+k+-atpase
12
na+k+-atpase
10
functional interaction
8
muscle fibers
8
na+k+-atpase isoforms
8
binding nachr
8
nachr
6
interaction nicotinic
4
nicotinic acetylcholine
4
acetylcholine receptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!