Objective: To investigate the effect of combination of glycine and methylprednisolone (MP) on Kupffer cells in liver of rats suffered from hemorrhagic shock.
Methods: Fifty Wistar rats were bled to establish the shock model and subsequently resuscitated with shed blood and normal saline. Just prior to resuscitation, the rats were randomly assigned to 5 groups: sham group, shock group, shock + glycine group, shock + MP group and shock + glycine + MP group. The intracellular calcium concentration and the level of tumor necrosis factor alpha (TNF alpha) in the culture medium of Kupffer cells were determined after stimulation with different concentrations (1, 10, 100 and 1000 ng/ml) of lipopolysaccharide (LPS).
Results: Concentration of intracellular calcium and production of TNF-alpha by isolated Kupffer cells stimulated by LPS were elevated significantly in the rats with hemorrhagic shock, which were totally prevented by glycine + MP compared with other groups (P < 0.005).
Conclusions: The combination of glycine and MP prevents the increase of intracellular calcium of Kupffer cell, suppress Kupffer cell activation, decrease the production of TNF-alpha of Kupffer cell and block systemic inflammatory responses more effectively than single administer of glycine or MP.
Download full-text PDF |
Source |
---|
Metabolism
December 2024
College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea. Electronic address:
Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Department of Hepatobiliary Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China. Electronic address:
Liver transplantation is currently recognized as the most effective treatment for severe liver diseases. Although survival rates after liver transplantation have improved, rejection of the transplanted liver remains a significant cause of morbidity and transplant failure in patients. Our team previously discovered a close association between high GBP1 expression and acute rejection reactions following liver transplantation.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States.
Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.
Bacterial infections are prevalent and the major cause of morbidity and mortality in cirrhosis. Activation of human Kupffer cells (HKCs) from livers is essential for human innate immunity. Cytosolic phospholipase A2 (cPLA2) plays a crucial role in the control and balance of innate immune and inflammatory reactions.
View Article and Find Full Text PDFJ Exp Med
February 2025
School of Basic Medical Sciences, Center for Infection Biology, Tsinghua University, Beijing, China.
The interception of blood-borne bacteria in the liver defines the outcomes of invasive bacterial infections, but the mechanisms of this antibacterial immunity are not fully understood. This study shows that natural antibodies (nAbs) to capsules enable liver macrophage Kupffer cells (KCs) to rapidly capture and kill blood-borne encapsulated bacteria in mice. Affinity pulldown with serotype-10A capsular polysaccharides (CPS10A) of Streptococcus pneumoniae (Spn10A) led to the identification of CPS10A-binding nAbs in serum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!