The goals of this study were to determine (a) if melatonin enhances human adult mesenchymal stem cell (hAMSC) differentiation into osteoblasts as assessed by measuring alkaline phosphatase (ALP) enzyme activity, and (b) identify potential signal transduction pathways that mediate this process. ALP activity significantly increased in hAMSCs following a 10-day incubation in osteogenic medium, relative to hAMSCs incubated in basal growth medium alone. Melatonin (50 nm), added in combination with the osteogenic medium, significantly increased ALP activity relative to osteogenic medium alone. Co-exposure of hAMSCs to osteogenic medium supplemented with melatonin and either pertussis toxin or the melatonin receptor antagonists, luzindole or 4P-PDOT (MT2 receptor selective), inhibited the melatonin-induced increase in ALP activity, indicating the involvement of melatonin receptors, in particular, MT2 receptors. Assessment of melatonin receptor function following exposure to osteogenic medium containing either vehicle or melatonin produced dichotomous results. That is, if the differentiation of hAMSCs into an osteoblast was induced by osteogenic medium alone, then 2-[125I]-iodomelatonin binding and melatonin receptor function increased. However, examination of melatonin receptor function following chronic melatonin exposure, an exposure that resulted in a 50% enhancement in ALP activity, revealed that these receptors were desensitized. This was reflected by a complete loss in specific 2-[125I]-iodomelatonin binding as well as melatonin efficacy to inhibit forskolin-induced cAMP accumulation. Further characterization of the mechanisms underlying melatonin's effects on these differentiation processes revealed that MEK (1/2) and ERK (1/2), epidermal growth factor receptors, metalloproteinase and clathrin-mediated endocytosis were essential while PKA was not. Our results are consistent with a role for melatonin in osteoblast differentiation. If so, then, the decrease in plasma melatonin levels observed in humans during late adulthood may further enhance susceptibility to osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-079X.2006.00318.xDOI Listing

Publication Analysis

Top Keywords

osteogenic medium
28
alp activity
16
melatonin receptor
16
melatonin
15
receptor function
12
melatonin enhances
8
alkaline phosphatase
8
human adult
8
adult mesenchymal
8
mesenchymal stem
8

Similar Publications

The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway.

Lasers Med Sci

January 2025

The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.

The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway.  METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.

View Article and Find Full Text PDF

Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).

View Article and Find Full Text PDF

Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol-gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite.

View Article and Find Full Text PDF

The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.

View Article and Find Full Text PDF

Fluoride Exposure Modulates Skeletal Development and Mineralization in Zebrafish Larvae.

Environ Toxicol

January 2025

Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.

The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!