New insights into the regulation of iron homeostasis.

Eur J Clin Invest

Department of Medicine III, Medical University of Vienna, Vienna, Austria.

Published: May 2006

Hepcidin evolves as a potent hepatocyte-derived regulator of the body's iron distribution piloting the flow of iron via, and directly binding, to the cellular iron exporter ferroportin. The hepcidin-ferroportin axis dominates the iron egress from all cellular compartments that are critical to iron homeostasis, namely placental syncytiotrophoblasts, duodenal enterocytes, hepatocytes and macrophages of the reticuloendothelial system. The gene that encodes hepcidin expression (HAMP) is subject to regulation by proinflammatory cytokines, such as IL-6 and IL-1; excessive hepcidin production explains the relative deficiency of iron during inflammatory states, eventually resulting in the anaemia of inflammation. The haemochromatosis genes HFE, TfR2 and HJV potentially facilitate the transcription of HAMP. Disruption of each of the four genes leads to a diminished hepatic release of hepcidin consistent with both a dominant role of hepcidin in hereditary haemochromatosis and an upstream regulatory role of HFE, TfR2 and HJV on HAMP expression. The engineered generation of hepcidin agonists, mimetics or antagonists could largely broaden current therapeutic strategies to redirect the flow of iron.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2362.2006.01633.xDOI Listing

Publication Analysis

Top Keywords

iron
8
iron homeostasis
8
flow iron
8
hfe tfr2
8
tfr2 hjv
8
hepcidin
6
insights regulation
4
regulation iron
4
homeostasis hepcidin
4
hepcidin evolves
4

Similar Publications

SNX30 inhibits lung adenocarcinoma cell proliferation and induces cell ferroptosis through regulating SETDB1.

J Cardiothorac Surg

January 2025

Department of Respiratory and Critical Care Medicine, Datian County General Hospital, 180 Xueshan North Road, Datian County, 366100, China.

Background: Lung adenocarcinoma is the most common form of lung cancer and one of the most life-threatening malignant tumors. Ferroptosis is an iron-dependent regulatory cell death pathway that is crucial for tumor growth. SNX30 is a key regulatory factor in cardiac development; however, its regulatory mechanism and role in inducing ferroptosis in lung adenocarcinoma remain unclear.

View Article and Find Full Text PDF

Trials were inconsistent while reporting findings on the benefits of the intermittent regimen. Recent conclusive evidence to show overall effect was limited. This review compared intermittent and daily iron folic acid supplementation (IFAS) on pregnancy outcomes.

View Article and Find Full Text PDF

Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.

View Article and Find Full Text PDF

Background: Surveys based on capillary blood show that anaemia is rampant in India, but capillary blood haemoglobin (Hb) may not accurately reflect venous blood Hb concentrations. Further, iron deficiency (ID) is thought to be the main cause of anaemia, there are no venous blood-based surveys to confirm this.

Methods: A community-based (urban, slum and rural) cross-sectional, venous blood survey was conducted in eight Indian states to estimate anaemia and ID prevalences from Hb and inflammation-corrected plasma ferritin concentrations in adolescents, adults, and elderly.

View Article and Find Full Text PDF

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!