Recent evidence for involvement of internal water molecules in the mechanism of bacteriorhodopsin is reviewed. Water O-H stretching vibration bands in the Fourier transform IR difference spectra of the L, M and N intermediates of bacteriorhodopsin were analyzed by photoreactions at cryogenic temperatures. A broad vibrational band in L was shown to be due to formation of a structure of water molecules connecting the Schiff base to the Thr46-Asp96 region. This structure disappears in the M intermediate, suggesting that it is involved in transient stabilization of the L intermediate prior to proton transfer from the Schiff base to Asp85. The interaction of the Schiff base with a water molecule is restored in the N intermediate. We propose that water is a critical mobile component of bacteriorhodopsin, forming organized structures in the transient intermediates during the photocycle and, to a large extent, determining the chemical behavior of these transient states.

Download full-text PDF

Source
http://dx.doi.org/10.1562/2006-01-16-IR-779DOI Listing

Publication Analysis

Top Keywords

schiff base
12
proton transfer
8
water molecules
8
water
6
water cofactor
4
cofactor unidirectional
4
unidirectional light-driven
4
light-driven proton
4
transfer steps
4
bacteriorhodopsin
4

Similar Publications

Heterocyclic compounds, especially those containing the pyrazole moiety, are highly significant in organic chemistry and possess remarkable and diverse biological properties. The 5-aminopyrazole derivatives are key starting materials for the synthesis of numerous bioactive compounds such as pyrazolopyridine, pyrazolopyrimidine, pyrazoloquinazoline, and pyrazolotriazine derivatives. Many compounds inspired by the 5-aminopyrazole derivatives possess a wide spectrum of biological activities and medicinal applications such as antioxidants, anticancer agents, enzyme inhibitors, antimicrobials, and anti-tuberculosis activities.

View Article and Find Full Text PDF

The scientific interest in the chemical modification of chitosan to increase its solubility and application has led to its conjugation with Schiff bases, which are interesting scaffolds endowed with diverse biological properties. The resultant chitosan-based Schiff bases (CSBs) are widely studied in scientific literature due to the myriad of activities exerted, both catalytic and biological, including anticancer, anti-inflammatory, antioxidant, and especially antimicrobial ones. Antimicrobial resistance (AMR) is one of the major public health challenges of the twenty-first century because it represents a threat to the prevention and treatment of a growing number of bacterial, parasitic, viral, and fungal infections that are no longer treatable with the available drugs.

View Article and Find Full Text PDF

The structural and electronic behavior of thiosemicarbazone (TSC)-based metal complexes of Mn (II), Fe (II), and Ni (II) have been investigated. The synthesized metal complexes were characterized using elemental analysis, magnetic susceptibility, molar conductivity, FTIR, and UV-Vis spectroscopy, the computational path helped with further structural investigation. The solubility test on the TSC and its complexes revealed their solubility in most organic solvents.

View Article and Find Full Text PDF

Herein, Schiff base was synthesized via reaction between 2-bromo-4-(trifluoromethoxy)aniline and 2-hydroxybenzaldehyde. The ligand was reacted with Cu(II) salt to obtain complex. The compounds  were characterization using various techniques.

View Article and Find Full Text PDF

Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!