Neuronal growth factors are thought to exert a significant degree of control over postnatal oligodendrogenesis, but mechanisms by which these factors coordinateoligodendrocyte development with the maturation of neural networks are poorly characterized. We present here a developmental analysis of aspartoacylase (Aspa)-null tremor rats and show a potential role for this hydrolytic enzyme in the regulation of a postnatal neurotrophic stimulus that impacts on early stages of oligodendrocyte differentiation. Abnormally high levels of brain-derived neurotrophic factor (BDNF) expression in the Aspa-null Tremor brain are associated with dysregulated oligodendrogenesis at a stage in development normally characterized by high levels of Aspa expression. BDNF promotes the survival of proliferating cells during the early stages of oligodendrocyte maturation in vitro, but seems to compromise the ability of these cells to populate the cortex in vivo. Aspartoacylase activity in oligodendrocytes is shown to provide for the negative regulation of BDNF in neurons, thereby determining the availability of a developmental stimulus via a mechanism that links oligodendroglial differentiation with neuronal maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20866 | DOI Listing |
Biotechnol J
December 2024
Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany.
The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.
The cornea is densely innervated to maintain the integrity of the ocular surface, facilitating functions such as sensation and tear production. Following damage, alterations in the corneal microenvironment can profoundly affect its innervation, potentially impairing healing and sensory perception. One protein frequently upregulated at the ocular surface following tissue damage is galectin-3, but its contribution to corneal nerve regeneration remains unclear.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, Jiangsu, China.
Neutrophil membrane vesicles (NMVs) have been successfully applied to control the inflammatory cascade after spinal cord injury (SCI) by acting as an inflammatory factor decoy to front-load the overall inflammation regulatory window; however, the mechanisms by which NMVs regulate macrophage phenotypic shifts as well as their outcomes have rarely been reported. In this study, we demonstrated the "efferocytosis-like" effect of NMVs endocytosed by macrophages, supplementing the TCA cycle intermediate metabolite α-KG by promoting glutamine metabolism, which in turn facilitates oxidative phosphorylation and inhibits the NF-κB signaling pathway to reprogram inflammatory macrophages to the pro-regenerative phenotype. Based on these findings, a "Trojan horse" composite fiber scaffold was constructed; this comprised a carboxylated poly-l-lactic acid shell encapsulated with NMVs and a core loaded with brain-derived neurotrophic factor to spatiotemporally modulate the inflammatory microenvironment by 39.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China. Electronic address:
To develop a scaffold suitable for simultaneous repair of both spinal cord injury (SCI) and sciatic nerve injury (SNI), we designed a multilayer composite membrane capable of unidirectional and sustained release of two factors: nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The membrane's morphology, mechanical properties, cytocompatibility, drug release kinetics, swelling, and degradation behavior were thoroughly characterized. Additionally, its ability to promote the differentiation of PC-12 cells was assessed.
View Article and Find Full Text PDFEur J Immunol
December 2024
Laboratory of Experimental Hematology, Vaccine and Infections Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
Genetic engineering of regulatory T cells (Tregs) presents a promising avenue for advancing immunotherapeutic strategies, particularly in autoimmune diseases and transplantation. This study explores the modification of Tregs via mRNA electroporation, investigating the influence of T-cell activation status on transfection efficiency, phenotype, and functionality. For this CD45RA Tregs were isolated, expanded, and modified to overexpress brain-derived neurotrophic factor (BDNF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!