Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence.

Analyst

Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.

Published: May 2006

Fluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power. While this greater light power can increase the fluorescence signal, it is not trivial to make proper use of this light. This new generation of LEDs has a large emitting area and a highly divergent beam. This presents a classic problem in optics where one must choose between either a small focused light spot, or high light collection efficiency. We have selected for light collection efficiency, which yields a light spot somewhat larger than the emitting area of the LED. This light is focused onto a flow cell. Increasing the detector cell internal diameter (i.d.) produces gains in (sensitivity)3. However, since the detector cell i.d. is smaller than the LED spot size, scattering of excitation light towards the detector remains a significant source of background signal. This can be minimized through the use of spectral filters and spatial filters in the form of pinholes. The detector produced a limit of detection (LOD) of 3 pM, which is roughly three orders of magnitude lower than other reports of LED-based fluorescence detectors. Furthermore, this LOD comes within a factor of six of much more expensive laser-based fluorescence systems. This detector has been used to monitor a separation from a gel filtration column of fluorescently labeled BSA from residual labeling reagent. The LOD of fluorescently labeled BSA is 25 pM.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b602193jDOI Listing

Publication Analysis

Top Keywords

light
9
light-emitting diodes
8
fluorescence detectors
8
emitting area
8
light spot
8
light collection
8
collection efficiency
8
detector cell
8
fluorescently labeled
8
labeled bsa
8

Similar Publications

This review explores the intricate relationship between glaucoma and circadian rhythm disturbances. As a principal organ for photic signal reception and transduction, the eye plays a pivotal role in coordinating the body's circadian rhythms through specialized retinal ganglion cells (RGCs), particularly intrinsically photosensitive RGCs (ipRGCs). These cells are critical in transmitting light signals to the suprachiasmatic nucleus (SCN), the central circadian clock that synchronizes physiological processes to the 24-hour light-dark cycle.

View Article and Find Full Text PDF

Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics.

Front Biosci (Landmark Ed)

December 2024

Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.

Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.

View Article and Find Full Text PDF

Tuning the Selectivity in the Nonoxidative Alkane Dehydrogenation Reaction by Potassium-Promoted Zeolite-Encapsulated Pt Catalysts.

JACS Au

December 2024

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.

The significance of the nonoxidative dehydrogenation of middle-chain alkanes into corresponding alkenes is increasing in the context of the world's declining demands on transportation fuels and the growing demand for chemicals and materials. The middle-chain alkenes derived from the dehydrogenation reaction can be transformed into value-added chemicals in downstream processes. Due to the presence of multiple potential reaction sites, the reaction mechanism of the dehydrogenation of middle-chain alkanes is more complicated than that in the dehydrogenation of light alkanes, and there are few prior studies on elucidating their detailed structure-reactivity relationship.

View Article and Find Full Text PDF

Lighting Up and Identifying Metal-Binding Proteins in Cells.

JACS Au

December 2024

Department of Chemistry and HKU-CAS Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, P.R. China.

Metal ions, either essential or therapeutic, play critical roles in life processes or in the treatment of diseases. Proteins and enzymes are involved in metal homeostasis and the action of metallodrugs. Imaging and identifying these metal-binding proteins will facilitate the elucidation of metal-mediated life processes.

View Article and Find Full Text PDF

The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!