Objective: Discrepancy between fields of view (FOVs) in a PET/CT scanner causes a truncation artifact when imaging extends beyond the CT FOV. The purposes of this study were to evaluate the impact of this artifact on measurements of 18F-FDG activity concentrations and to assess a truncation correction algorithm.

Materials And Methods: Two phantoms and five patients were used in this study. In the first phantom, three inserts (water, air, bone equivalent) were placed in a water-filled cylinder containing 18F-FDG. In the second phantom study, a chest phantom and a 2-L bottle fitted with a bone insert were used to simulate a patient's torso and arm. Both phantoms were imaged while positioned centrally (baseline) and at the edge of the CT FOV to induce truncation. PET images were reconstructed using attenuation maps from truncated and truncation-corrected CT images. Regions of interest (ROIs) drawn on the inserts, simulated arm, and background water of the baseline truncated and truncation-corrected PET images were compared. In addition, extremity malignancies of five patients truncated on CT images were reconstructed with and without correction and the maximum standard uptake values (SUVs) of the malignancies were compared.

Results: Truncation artifact manifests as a rim of high activity concentration at the edge of the truncated CT image with an adjacent low-concentration region peripherally. The correction algorithm minimizes these effects. Phantom studies showed a maximum variation of -5.4% in the truncation-corrected background water image compared with the baseline image. Activity concentration in the water insert was 6.3% higher while that of air and bone inserts was similar to baseline. Extremity malignancies showed a consistent increase in the maximum SUV after truncation correction.

Conclusion: Truncation affects measurements of 18F-FDG activity concentrations in PET/CT. A truncation-correction algorithm corrects truncation artifacts with small residual error.

Download full-text PDF

Source
http://dx.doi.org/10.2214/AJR.05.0255DOI Listing

Publication Analysis

Top Keywords

truncation artifact
12
activity concentration
12
truncation
8
correction algorithm
8
measurements 18f-fdg
8
18f-fdg activity
8
activity concentrations
8
air bone
8
pet images
8
images reconstructed
8

Similar Publications

The 2024 Zurich perfluorinated compounds (PFCs) summit reiterated the urgent need for non-selective analytical approaches for PFC detection. 19F NMR holds great potential, however, sensitivity limitations lead to long analysis times and/or the possibility of not detecting low concentration species. Steady State Free Precession (SSFP) NMR collects the signal in a steady state regime, allowing 100's of acquisitions in the timespan of a single traditional NMR scan.

View Article and Find Full Text PDF

High-sensitivity total-body PET enables faster scans, lower doses, and dynamic multiorgan imaging. However, the higher system cost of a scanner with a long axial field of view (AFOV) hinders its wider application. This paper investigates the impact on the lesion quantification and detectability of cost-effective total-body PET sparse designs.

View Article and Find Full Text PDF

Megavoltage computed tomography (MVCT) plays a crucial role in patient positioning and dose reconstruction during tomotherapy. However, due to the limited scan field of view (sFOV), the entire cross-section of certain patients may not be fully covered, resulting in projection data truncation. Truncation artifacts in MVCT can compromise registration accuracy with the planned kilovoltage computed tomography (KVCT) and hinder subsequent MVCT-based adaptive planning.

View Article and Find Full Text PDF

. Accurate image reconstruction from data with truncation in x-ray computed tomography (CT) remains a topic of research interest; and the works reported previously in the literature focus largely on reconstructing an image only within the scanning field-of-view (FOV). We develop algorithms to invert the truncated data model for numerically accurate image reconstruction within the subject support or a region slightly smaller than the subject support.

View Article and Find Full Text PDF

We recently reanalyzed 20 combinatorial mutagenesis datasets using a novel reference-free analysis (RFA) method and showed that high-order epistasis contributes negligibly to protein sequence-function relationships in every case. Dupic, Phillips, and Desai (DPD) commented on a preprint of our work. In our published paper, we addressed all the major issues they raised, but we respond directly to them here.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!