During ventricular fibrillation (VF), electrical activation waves are fragmented, and the heart cannot contract in synchrony. It has been proposed that VF waves emanate from stable periodic sources (often called "mother rotors"). The objective of the present study was to determine if stable rotors are consistently present on the epicardial surface of hearts comparable in size to human hearts. Using new optical mapping technology, we imaged VF from nearly the entire ventricular surface of six isolated swine hearts. Using newly developed pattern analysis algorithms, we identified and tracked VF wave fronts and phase singularities (PS; the pivot point of a reentrant wave front). We introduce the notion of a compound rotor in which the rotor's central PS can change and describe an algorithm for automatically identifying such patterns. This prevents rotor lifetimes from being inappropriately abbreviated by wave front fragmentation and collision events near the PS. We found that stable epicardial rotors were not consistently present during VF: only 1 of 17 VF episodes contained a compound rotor that lasted for the entire mapped interval of 4 s. However, shorter-lived rotors were common; 12.2 (SD 3.3) compound rotors with lifetime >200 ms were visible on the epicardium at any given instant. We conclude that epicardial mother rotors do not drive VF in this experimental model; if mother rotors do exist, they are intramural or septal. This paucity of persistent rotors suggests that individual rotors will eventually terminate by themselves and therefore that the continual formation of new rotors is critical for VF maintenance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779904PMC
http://dx.doi.org/10.1152/ajpheart.00276.2006DOI Listing

Publication Analysis

Top Keywords

rotors
10
epicardial rotors
8
rotors consistently
8
wave front
8
compound rotor
8
mother rotors
8
lifetimes epicardial
4
rotors panoramic
4
panoramic optical
4
optical maps
4

Similar Publications

Labyrinth seals (LSs) in turbomachinery are used to minimize leaks. This study presents an experimental setup designed to test and validate LS designs. The test bench (TB) described in this paper can evaluate different LS designs obtained through various methods to find better solutions to mitigate greenhouse gas (GHG) emissions.

View Article and Find Full Text PDF

Background: Few clinical studies of atrial fibrillation (AF) have focused on Asian patients; data are lacking on current mapping and ablation strategies in the Asia Pacific region (APAC).

Objective: The HD Mapping Observational Study (NCT04022954) was designed to characterize electroanatomic mapping (EAM) with market-released high-density mapping (HDM) catheters in subjects with AF in APAC.

Methods: Subjects undergoing HDM and indicated for radiofrequency ablation (RFA) to treat AF were prospectively enrolled in APAC.

View Article and Find Full Text PDF

Aerodynamic performance enhancement of centrifugal compressor using numerical techniques.

F1000Res

January 2025

Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.

View Article and Find Full Text PDF

Background: Complexity and signal recurrence metrics obtained from body surface potential mapping (BSPM) allow quantifying atrial fibrillation (AF) substrate complexity. This study aims to correlate electrocardiographic imaging (ECGI) detected reentrant patterns with BSPM-calculated signal complexity and recurrence metrics.

Methods: BSPM signals were recorded from 28 AF patients (17 male, 11 women, 62.

View Article and Find Full Text PDF

Cells display a range of mechanical activities generated by motor proteins powered through catalysis. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven molecular motors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!