The development of automated systems for data acquisition in cryo electron microscopy has enabled the possibility of acquiring very large number of images from a single specimen grid. We have demonstrated that over images of 250,000 single particles can be acquired in a 24 h period. This has raised questions as to whether contamination buildup on the specimen limits the quality of the data that can be acquired during these long duration experiments and also whether the data acquisition session could be extended to allow acquisition of more than 1,000,000 particles. We report here a systematic characterization of contamination of specimens maintained for long periods of time at liquid nitrogen temperatures using standard side entry cryo stages. As part of this characterization we developed a more reliable method for accurately estimating specimen ice thickness. Using the method, we were able to calibrate image contrast against ice thickness under a variety of magnifications, objective aperture positions, and defoci, and demonstrated the strong dependence of the calibration curve on these parameters. The results show the anti-contamination aperture is, as expected, critical to the prevention of contamination and that loading film into the microscope dramatically increases the contamination rate, particularly in the first 3 h after the insertion of the film box. In the absence of film, we were able to reproducibly demonstrate that the contamination rate can be limited to a rate of approximately 1 angstrom/h providing reassurance that contamination will not be a major limiting factor for long term cryoEM experiments if a CCD camera is used for the imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2006.03.005 | DOI Listing |
Toxins (Basel)
November 2024
Department of Nutrition, Dietetics & Food Science, Brigham Young University, Provo, UT 84602, USA.
Mycotoxins are toxins produced by fungi that contaminate many key food crops as they grow in the field and during storage. Specific mycotoxins are produced by different fungi. Each type of fungus and mycotoxin have their own optimal temperatures and water activities for growth and production.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP).
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra 14000, Morocco.
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup of contaminants due to direct discharge of waste from chicken farms and existing water quality conditions has led to higher fecal matter in the Silway River.
View Article and Find Full Text PDFJ Mater Chem C Mater
November 2024
Department of Applied Physics, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
Chemosphere
November 2024
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!