Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the past few years progress has been made in understanding the molecular mechanisms that underlie the initial generation, and the ensuing differentiation and maintenance, of humoral and cellular immunity. Although B and T cell immunological memory contribute to protective immunity through fundamentally distinct effector functions, interesting analogies are becoming apparent between the two memory compartments. These include heterogeneity in function, anatomical location and phenotype, which probably relate to differential environmental cues during the early priming events as well as the later differentiation phases. Detailed definition of the molecular and cellular signals involved in the development of immunological memory, and the relative contributions of different memory subsets to protective immunity, remains an important goal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coi.2006.03.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!