Vanishing white matter disease (VWM) is one of the most prevalent inherited childhood leucoencephalopathies. The classical phenotype is characterised by early childhood onset of chronic neurological deterioration, dominated by cerebellar ataxia. VWM is unusual because of its clinically evident sensitivity to febrile infections, minor head trauma, and acute fright, which may cause rapid neurological deterioration and unexplained coma. Most patients die a few years after onset. The phenotypic variation is extremely wide, including antenatal onset and early demise and adult-onset, slowly progressive disease. MRI findings are diagnostic in almost all patients and are indicative of vanishing of the cerebral white matter. The basic defect of this striking disease resides in either one of the five subunits of eukaryotic translation initiation factor eIF2B. eIF2B is essential in all cells of the body for protein synthesis and its regulation under different stress conditions. Although the defect is in housekeeping genes, oligodendrocytes and astrocytes are predominantly affected, whereas other cell types are surprisingly spared. Recently, undue activation of the unfolded-protein response has emerged as important in the pathophysiology of VWM, but the selective vulnerability of glia for defects in eIF2B is poorly understood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1474-4422(06)70440-9 | DOI Listing |
Brain Imaging Behav
January 2025
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Physical exercise is a promising intervention to improve brain white matter integrity. In the PAM study, exercise intervention effects on white matter integrity were investigated in breast cancer patients. Chemotherapy-treated breast cancer patients with cognitive problems were randomized 2-4 years post-diagnosis to an exercise (n = 91) or control group (n = 90).
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.
A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.
View Article and Find Full Text PDFObjective: To explore whether the inflammatory activity is higher in white matter (WM) tracts disrupted by paramagnetic rim lesions (PRLs) and if inflammation in PRL-disrupted WM tracts is associated with disability in people with multiple sclerosis (MS).
Methods: Forty-four MS patients and 16 healthy controls were included. 18 kDa-translocator protein positron emission tomography (TSPO-PET) with the C-PK11195 radioligand was used to measure the neuroinflammatory activity.
F-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!