Human Mpv17-like protein is localized in peroxisomes and regulates expression of antioxidant enzymes.

Biochem Biophys Res Commun

Division of Forensic Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.

Published: June 2006

M-LP (Mpv17-like protein) is a protein that was initially identified in mouse tissues and shows high sequence homology with Mpv17 protein, a peroxisomal membrane protein involved in the development of early-onset glomerulosclerosis [R. Iida, T. Yasuda, E. Tsubota, H. Takatsuka, M. Masuyama, T. Matsuki, K. Kishi, M-LP, Mpv17-like protein, has a peroxisomal membrane targeting signal comprising a transmembrane domain and a positively charged loop and up-regulates expression of the manganese superoxide dismutase gene, J. Biol. Chem. 278 (2003) 6301-6306]. Here we report the identification and characterization of a human homolog of the M-LP (M-LPH) gene. The M-LPH gene is composed of four exons, extends over 14kb on chromosome 16p13.1, and is expressed as two alternatively spliced variants comprising four and three exons, respectively, which include open-reading frames encoding two distinct isoforms composed of 196 (M-LPH1) and 147 (M-LPH2) amino acids, respectively. These two variants were expressed ubiquitously in human tissues, however only M-LPH1 was detected at the protein level. Dual-color confocal analysis of COS-7 cells transfected with a green fluorescent protein-tagged M-LPH1 demonstrated that M-LPH1 is localized in peroxisomes. In order to elucidate the function of M-LPH1, we examined the mRNA levels of several enzymes involved in the metabolism of reactive oxygen species in COS-7 cells and found that transfection with M-LPH1 down-regulates expression of the plasma glutathione peroxidase and catalase genes. These results show the existence of the human homolog of M-LP and its participation in reactive oxygen species metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.04.008DOI Listing

Publication Analysis

Top Keywords

mpv17-like protein
12
localized peroxisomes
8
m-lp mpv17-like
8
protein peroxisomal
8
peroxisomal membrane
8
human homolog
8
homolog m-lp
8
m-lph gene
8
cos-7 cells
8
reactive oxygen
8

Similar Publications

M-LP/Mpv17L (Mpv17-like protein) is an atypical cyclic nucleotide phosphodiesterase (PDE) without the molecular structure characteristic of the PDE family. Deficiency of M-LP/Mpv17L in mice has been found to result in development of β-cell hyperplasia and improved glucose tolerance. Here, we report another phenotype observed in M-LP/Mpv17L-knockout (KO) mice: afferent cardiac hypertrophy.

View Article and Find Full Text PDF

Genome-derived microRNAs (miRNAs or miRs) control post-transcriptional gene expression critical for various cellular processes. Recently, we have invented a novel platform technology to achieve high-yield production of fully humanized, bioengineered miRNA agents (hBERAs) for research and development. This study is aimed to produce and utilize a new biologic miR-34a-5p (or miR-34a) molecule, namely, hBERA/miR-34a, to delineate the role of miR-34a-5p in the regulation of mitochondrial functions in human carcinoma cells.

View Article and Find Full Text PDF

M-LP/Mpv17L is a protein that was initially identified during screening of age-dependently expressed genes in mice. We have recently demonstrated that M-LP/Mpv17L-knockout (M-LP/Mpv17L-KO) in human hepatoma cells leads to a reduction of cellular cyclic nucleotide phosphodiesterase (PDE) activity, and that in vitro-synthesized M-LP/Mpv17L possesses PDE activity. These findings suggest that M-LP/Mpv17L functions as an atypical PDE, even though it has none of the well-conserved catalytic region or other structural motifs characteristic of the PDE family.

View Article and Find Full Text PDF

Association Mapping of Verticillium Wilt Disease in a Worldwide Collection of Cotton ( L.).

Plants (Basel)

February 2021

Department of Agricultural Biotechnology, Faculty of Agriculture, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46100, Turkey.

Cotton ( spp.) is the best plant fiber source in the world and provides the raw material for industry. Verticillium wilt caused by Kleb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!