In teleostean fish, ventilation increases have been observed in response to low dissolved oxygen levels, visual stimuli, and gustatory cues. However, olfactory sensory input may also stimulate gill ventilation rate. We investigated whether olfactory sensory input mediates gill ventilation responses, as suggested by the observation that steroidal compounds detected by the olfactory system elicited increases in opercular activity in the perciform teleost, the round goby (Neogobius melanostomus). Close parallels between gill ventilation and olfactory responses, led us to conduct an empirical study that used two different olfactory sensory deprivation techniques to seek a causal relationship between olfactory epithelial activity and hyperventilation. Chemical lesion of olfactory sensory neurons or mechanical occlusion of the nasal cavities inhibited gill ventilation responses of reproductive male round gobies to estrone (1,3,5(10)-estratrien-3-ol-17-one) and to ovarian extracts. This direct evidence demonstrates the role of olfactory sensory input for the gill ventilation response to putative reproductive pheromones and may represent an important regulatory mechanism for odorant sampling during pheromone communication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2006.02.027DOI Listing

Publication Analysis

Top Keywords

olfactory sensory
24
gill ventilation
24
sensory input
16
olfactory
9
male round
8
round gobies
8
neogobius melanostomus
8
ventilation responses
8
ventilation
7
gill
6

Similar Publications

Background: Chemosensory perception plays a vital role in insect survival and adaptability, driving essential behaviours such as navigation, mate identification, and food location. This sensory process is governed by diverse gene families, including odorant-binding proteins (OBPs), olfactory receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs), gustatory receptors (GRs), and sensory neuron membrane proteins (SNMPs). The oriental mole cricket (Gryllotalpa orientalis Burmeister), an invasive pest with an underground, phyllophagous lifestyle, causes substantial crop damage.

View Article and Find Full Text PDF

Chemical signatures of social information in Barbary macaques.

Sci Rep

January 2025

Behavioural Ecology Group, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.

Primates are well-known for their complex social lives and intricate social relationships, which requires them to obtain and update social knowledge about conspecifics. The sense of smell may provide access to social information that is unavailable in other sensory domains or enhance the precision and reliability of other sensory cues. However, the cognition of social information in catarrhine primates has been studied primarily in the visual and auditory domain.

View Article and Find Full Text PDF

Target odorant detection in mixtures has been shown to become more difficult as the number of background odorants increases and falls below chance level in mixtures with 16 components. Our aim was to investigate target odorant detection in mixtures among healthy people and compare it between dysosmic patients and age- and gender-matched controls. Participants underwent extensive olfactory testing and performed two target odorant detection tasks.

View Article and Find Full Text PDF

Neurotropic viruses are a major public health concern as they can cause encephalitis and other severe brain diseases. Many of these viruses, including flaviviruses, herpesviruses, rhabdoviruses and alphaviruses enter the brain through the olfactory neuroepithelium (ONE) in the olfactory bulbs (OB). Due to the low percentage of encephalitis that occurs following these infections, it's thought that the OBs have specialized innate immune responses to eliminate viruses.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is closely related to SARS-CoV and uses angiotensin-converting enzyme 2 as its cellular receptor. In early 2020, reports emerged linking CoV disease 2019 (COVID-19) to olfactory and gustatory disturbances. These disturbances could be attributed to virus-induced damage to olfactory neurons or immune responses, thereby affecting sensory functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!